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Abstract. Creation and annihilation operators are defined which are Wigner operators 
(tensor shift operators) for SU(3). While the annihilation operators are simply boson 
operators, the creation operators are cubic polynomials in boson operators. Together they 
generate under commutation the Lie algebra of S0(6,2) .  The vector space generated from 
a vacuum vector by repeated application of the creation operators carries an irreducible 
representation of the S0(6 ,2)  algebra, equivalent to an hermitian representation, and also 
carries in direct sum every different irreducible representation of SU(3) < S0(6,2)  exactly 
once. A model for SU(3), in the sense of BernStein, Gel’fand and Gel’fand, is therefore 
defined. The different SU(3) irreducible representations appear explicitly as manifestly 
covariant, irreducible tensors, whose orthogonality and normalisation properties are 
examined. Other Wigner operators for SU(3) can be constructed simply as products of 
the new creation and annihilation operators, or sums of such products. 

1. Introduction 

The representation theory of the groups SU( n )  continues to play an important role in 
several areas of quantum mechanics. While the theory has been most fully developed 
for SU(2) because of its association with angular momentum (see in particular Gel’fand 
et a1 (1963), Schwinger (1965) and Biedenharn and Louck (1981)), it is also true that 
many aspects have been extensively developed for larger values of n. In the present 
context, the works of Baird and Biedenharn (1963, 1964,1965), Biedenharn et al(l967, 
1972), Biedenham and Louck (1968), Arisaka (1972), Holman and Biedenharn (1971), 
Louck and Biedenham (1973) and Louck et a1 (1975) are particularly relevant. 

The present work is concerned with the problem of constructing a simple model 
for SU(3), a group which occupies a favoured position in modern particle theory. 
Following BernStein et a1 (1975), a model of a compact Lie group G is defined as a 
realisation of a representation of G which consists of a direct sum of irreducible representa- 
tions (irreps), containing exactly one representative from every equivalence class of irreps 
of G. A model of a group may be regarded as providing a minimal framework or 
skeleton for its representation theory. 

Different models will exist for a given G. These will be equivalent as representations, 
but one model may have advantages over others for certain computational or explicative 
purposes because of its particular realisation. 

T Present address: Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 OHA, 
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This is well illustrated in the case of SU(2), for which several models can be found 
in the literature quoted above, by reference to Schwinger's model (Schwinger 1965), 
which exploits the computational advantages of the boson calculus. Having introduced 
a pair of creation operators E r  ( r  = 1,2), their Hermitian conjugate annihilation 
operators a, and a normalised 'vacuum vector' 40, one can easily construct basis 
vectors for each finite-dimensional irrep of SU(2), generated by (the hermitian linear 
combinations of) the operators 

T : = E r ~ ,  - i S : ( E r ~ , ) ,  ( 1 )  

(2) 

or equivalently, in a more familiar notation, by 

J ,  =;(&'a2  +Cy2al), J2 = $( 6' a ,  - E I a2) ,  J3 = ;( E ' I - E a2). 

The two-boson Fock space .92 consisting of all finite linear combinations of vectors 
of the form (& ' ) " (E2) " r$o ,  with m and n non-negative integers, decomposes into a 
direct sum of SU(2)-irreducible subspaces. The basis vectors for the ( 2 j + l ) -  
dimensional subspace T:( = ( J 1 ) 2  + ( J2)2  + 
( J3)')  has the value j ( j  + I ) ,  can be taken to be 

on which the Casimir operator 

{ ( E ' ) ' + " ( E ~ ) ' - " / [ ( ~  + m)!(j  - m)!]"2}40 ,  m = j , j - 1 ,  . . . ,  -j, 
(3) 

(4) 

corresponding to eigenvalues m of J,.  It can be seen that 

9 2  = Yo0 Y',2 0 VI 0. . . . 
Thus every different irrep of SU(2) occurs exactly once in the representation generated 
by the Ti on 92, and a model is defined. 

The operators a,, E r ,  A: ( = E r a 5 )  and I (unit operator), or rather the nine 
independent Hermitian linear combinations of these operators, can be regarded as 
generators of a unitary irrep of a Lie group UW2 with Lie algebra defined by the 
commutation relations 

a , l = ~ = [ ~ r ,  t i s ] ,  [a,, E,]  = s:z, 
[a,, I ]  = [ E r ,  I ]  = [Ai,  I ]  = 0,  

[a,, A:] = a",, [E ' ,  A:]=  --S:&', 

[A:, A: ]=  6:A: - S:A:. 

This group UW2, which is neither compact nor semi-simple, has the Weyl-Heisenberg 
group W, as a subgroup, associated with the generators E r ,  a, and I ;  and U(2) as 
maximal compact subgroup, associated with the A:. Schwinger's model of SU(2) may 
be regarded as defined by this unitary irrep of UW2 on the closure of 9*: when regarded 
as a representation of SU(2) < U(2) < UW2, it contains every different (unitary) irrep 
exactly once. 

In attempting to generalise Schwinger's model to SU(3), one naturally considers 
at first the irrep of UW, on 9,. Thus a triplet of boson pairs E', a,  ( r  = 1,2,3) can 
be introduced in place of the doublet used for SU(2), and SU(3) generators can be 
defined as 

acting on the three-boson space 93. However, this does not define a model for SU(3) 
because, as is well known (Baird and Biedenharn 1963, 1964, 1965), not all irreps 

T i =  E r a ,  - f6: (Efar) ,  (6) 
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occur within the representation generated by these T:  (although those that do occur- 
the 'completely symmetric' ones, corresponding to one-rowed Young diagrams-occur 
once only). This can be remedied in (at least) two different ways. 

One way, as expounded in detail by Baird and Biedenharn, is to introduce two (or 
more) triplets of boson pairs E', a', p', (here any a-operator commutes with any 
P-operator), and to define, in place of (6), 

T: = &'as - $ : ( E ' a t )  +prps -$3:(py3f). (7) 

These generate on 9 6  a unitary representation of SU(3) < UW, which certainly contains 
every irrep at least once. Unfortunately a model is not thereby defined, because 
repetitions occur: for example, the vectors E'c#J~ and pr40 span distinct but equivalent 
three-dimensional irreps. This difficulty can be overcome, as Holman and Biedenharn 
(1971) have shown, by systematically restricting attention to a particular subspace of 
9 6  which does contain each irrep of SU(3) exactly once, and so defines a model. 
Nevertheless, an attractive feature of Schwinger's model is now missing: the model 
does not admit every vector that can be obtained from the vacuum vector by application 
of the given creation operators. Furthermore, there are certainly many other ways of 
restricting 9 6  to a subspace that defines a model. 

The second way of extending the three-boson representation of SU(3) to a model 
is again to introduce, together with E' and ar,  a second triplet of boson pairs, this 
time labelled p,, p', so that 

where c $ ~  is the vacuum vector. (All other commutators vanish.) The operators 

Ti = E r a s  -f6:(E'af) -P;/3'+4S:(/?,pr) (9) 
replace those in (6) or (7 ) ,  and satisfy the same commutation relations. Whereas the 
creation operators E form a contravariant U(3)-vector, and the annihilation operators 
a,  a covariant U(3)-vector, the reverse is true for the creation operators pr and 
annihilation operators p'. Thus, having defined the U(3) generators 

A: = E 'as - psp ', (10) 

[A:, A:]= 6:AI - SLAf, (11)  

[E ' ,  A:]= -SLE", [la,, A:] = 8:at, (12) 

[P', A 3  = m, [P', A:]=-6:pS. (13) 

which satisfy the usual relations 

one finds 

but 

This approach to SU(3) has been developed by Takabayasi (1964) and, more fully, by 
Arisaka (1972). 

(The operators E r ,  pr may be thought of as 'quark' and 'anti-quark' creation 
operators, respectively, and correspond to conjugate three-dimensional irreps of U(3). 
Actually, the U(3) generators would be A: + S:(pfp') rather than A: as in (lo),  if the 
usual convention were adopted that the labelling of an irrep of U(3) by its highest 
weight should match exactly its labelling by the row lengths of a corresponding Young 
diagram. Then the vectors would correspond to irreps labelled (1,0,0) and 
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and (1,  1,0), whereas the generators (10) lead to a labelling by highest weights as 
(1,0,0) and (0, 0, -1). The choice (10) and associated labelling by highest weights is 
more natural here and in what follows as it treats the a-operators and P-operators 
symmetrically, and leads to the simple relations (12) and ( 13).) 

In the six-boson space s6 spanned by all the vectors that can be obtained from 4o 
by repeated application of the creation operators 6' and &, the SU(3) operators (9) 
generate a unitary representation that again contains every different irrep at least once. 
But again, a model is not defined because repetitions occur. For example, (E'/%)N40 
is a singlet for every non-negative integer N. Arisaka has shown how to project onto 
SU( 3)-irreducible subspaces, and it is therefore clear that various subspaces carrying 
every different irrep exactly once-and hence defining models-can be identified. Once 
again, however, there is no unique way to proceed, and whatever procedure is adopted, 
certain of the vectors obtainable by applying the boson creation operators to bo have 
to be excluded from consideration. 

Why does this complication arise for SU(3), in both the approaches described, but 
not for SU(2)? A partial answer is that, in the SU(2) case, the operators 6 r ,  a,  ( r  = 1,2), 
are not only contravariant and covariant operators, respectively, with respect to U(2) 
and SU(2), they are also Wigner operators for both groups (Biedenharn and Louck 
1981). That is to say, they are shift operators for the representation labels of these 
groups, and in particular for the SU(2) representation label j .  When an E r  is applied 
to a vector with a definite value of j ,  a vector is obtained with a value of j increased 
by one half unit. Thus one obtains from +o ( j  = 0) the vectors E r40 ( j  = t ) ,  E rES+o  ( j  = 1 ) 
etc, and automatically generates a chain of SU(2)-irreducible subspaces. The shifting 
property for the 6, and a, can be made explicit: the invariant +TIT; for SU(2), with 
TI as in ( l ) ,  is found to satisfy 

-jT: Tf = J (  J + 1 ), J = $6 rar, (14) I 

and J can be identified with the labelling operator whose eigenvalue is j .  It is then 
evident from the boson commutation relations that 

Jar = a,( J -;). (15) J -  a ' -  - a'( - J +f), 
In the approach of Baird and Biedenharn to U(3) and SU(3), the 6' and p' are 

three-vector operators, but they are not Wigner operators. For example, when p' is 
applied to the vector belonging to the U(3) irrep (1,0,0), it produces a superposi- 
tion of vectors in (2,0,0) and (1,  1,O). Associated with this is the fact that one cannot 
find simple functions M and N of the boson operators fir ,  a,, p' and P, which have 
the eigenvalues m and n on the irrep labelled ( m ,  n, 0). Similar remarks apply to the 
operators E r ,  a,, p, and P' of Arisaka's approach. 

This suggests a possible way of avoiding the difficulty: replace the usual boson 
operators by creation and annihilation operators which are Wigner operators. In the 
spirit of Lohe and Hurst (1971), who defined 'modified' boson operators that are 
Wigner operators for the orthogonal and symplectic groups, and who used them, in 
effect, to formulate models for those groups, one may attempt to 'modify' in an 
appropriate way the boson operators of either the approach of Baird and Biedenharn 
or that of Arisaka. A general technique does exist for systematically resolving tensor 
operators of any classical group into Wigner operators (Bracken and Green 1971, 
Green 1971, Green and Bracken 1974, Gould 1980), and could be used here. However, 
one might expect that the Wigner operators obtained by this or some other method 
from the given boson operators would not be simply polynomials in those boson 
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operators. (For instance, they are not polynomials in the cases treated by Lohe and 
Hurst.) Then their introduction might not provide an attractive resolution of the 
difficulties described above, because the computational simplicity associated with the 
boson calculus might be lost. 

Fortunately it turns out that this is not the case for certain Wigner creation and 
annihilation operators for SU(3) which can be obtained very simply by modifying the 
boson operators of Arisaka's approach. These Wigner operators do have simple (cubic) 
expressions in terms of the boson operators, and they do satisfy simple algebraic 
relations. Furthermore, they have the fundamental property that all vectors (and only 
such vectors) obtainable from a vacuum vector by the application of these operators 
lie in a vector space which carries every different irrep of SU(3) exactly once. Their 
introduction therefore leads directly to a model for SU(3). 

(After the preparation of the first version of this work, the authors' attention was 
drawn to preprints by Flath (1984), Flath and Biedenharn (1982), Biedenharn and 
Flath (1984a, b)  in which some closely related results are obtained, but from a different 
direction. They arrive at the same realisation of the S0(6,2)  algebra described in $3 
belqw, but their emphasis is on the algebra of SU(3) tensor operators and a resolution 
of the multiplicity problem for such operators, rather than the construction of creation 
and annihilation operators which lead to a model of SU(3). Sparling (1981) identified 
the relevant irrep of the S 0 ( 6 , 2 )  algebra even earlier, and described some properties 
of its SU(3) content, within the context of a model of elementary particles. The authors 
are indebted to a referee for bringing this last reference to their attention.) 

2. Wigner creation and annihihtion operators 

In the framework considered by Arisaka, the structure of the U(3) generators A: as 
in (10) reflects a certain structure for that group's representation in the six-boson space 
5F6: the GraS are associated with a direct sum of irreps 

f @(P, 0, O), (16) 
p = o  

where p is the nonnegative integral eigenvalue of the number operator 

P = G Y ' a , ;  (17) 

and similarly the -DsP' are associated with a direct sum 

where q is the eigenvalue of 

Q = D r P  '. (19) 

The A: therefore generate a direct sum of representations, each of the form ( p ,  0,O) 0 
( O , O ,  - q ) ,  which reduces as (Pais 1966) 
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where m is the smaller of p and q. In full then, the A: generate in P6 the representation 

Consider the Casimir operator for U(3), 

;A:A: = ;(&‘a, -&pi)( - brps).  
With the help of the boson commutation relations, it is easily checked that 

;A:A: = ;P(  P + 2 )  +;Q( Q + 2 )  - x, (23) 

X = (.‘P;)(aspS). (24)  

where X is the Hermitian operator 

It is known (Okubo 1962) that on an irrep of U(3) labelled ( A ,  p, v) by highest weights, 
the Casimir operator takes the value 

: ( A 2  -I- 2 A  + p 2  + v2 - 2 ~ ) .  ( 2 5 )  

f A : A ” , i p ( p + 2 ) + i q ( q + 2 ) -  k ( p + q + 2 - k ) ,  (26) 

x = k ( p  + q  +2 - k ) .  ( 2 7 )  

Therefore, on an irrep ( p -  k,O, k - q )  in the sum ( 2 1 )  one has 

and so 

It follows that, by restricting the representation space to the subspace 9 c .F6 on which 
X = O  (corresponding to k = O  in (27)  and (21)), one restricts the representation of 
U(3) from that in ( 2 1 )  to 

The operator X is the simplest of the ‘trace’ operators introduced by Arisaka and used 
by him to construct projectors onto U(3) irreps in the sum (21). Note that X has the 
form 8’6, with 8 = a,pr and et  its Hermitian conjugate. The condition that X = 0 on 
93 is therefore equivalent to the simpler condition 

a,pr+ = 0 (29)  

for every vector C#I in 9. 
Note that the typical representation ( p ,  0, - 9 )  in the sum (28)  is labelled by the 

eigenvalues p and q of P and Q, because it is associated unambiguously with the 
tensor product ( p ,  0,O)O (0, 0, -4). The number operators P and Q evidently form a 
complete set of independent U(3) scalars on 93 (though not on the larger space s6), 
and any other U(3) scalar is therefore, on 9, a function of them. In particular 

A:  = P - Q, A:AS = P( P + 2 )  + Q ( Q  + 2 ) ,  

A:ATA:= P 3 - Q 3 + 4 P 2 + 4 P - 2 Q 2 + 2 Q + P Q .  

These results may be verified explicitly, using the boson relations and the fact that 
(29) holds on 93, or they may be deduced from the known values (Okubo 1962) of 
these U(3) invariants on an irrep labelled ( p ,  0, -4 ) .  



SO( 6 , 2 )  model of SU(  3 )  2587 

Such an irrep remains irreducible when restricted to SU(3), and corresponds to 
the two-rowed Young diagram with row lengths p + q and q:  it will be labelled ( p  + q, q )  
in what follows. Then it is a consequence of (28) that the subrepresentation of SU(3) 
generated in 93 by the operators T: as in (9 ) ,  

T:  = A: -f6:Ai, (31) 

has the form 

This sum can be seen to contain every different irrep of SU(3) exactly once. 
Each term in this sum is associated in one-to-one fashion with a pair of eigenvalues 

p ,  q of P and Q. The independent SU(3) invariants on 93 take the form, from (30) 
and (31), 

T i  Tf = f( P 2  + Q' + PQ +3P +3 Q ) ,  

T :  T: T i  = $(2P3  - 2Q3 + 3 P 2 Q  - 3PQ' + 18P' +9PQ +36P + 1 8Q).  
(33) 

It is clear that any Wigner operator for SU(3) (or U(3)) on 93 must be a shift operator 
for P and Q, since it  has to take a vector from one irrep to another, and hence one 
eigenvector of P and Q into another. Therefore it is of interest to construct, from the 
given boson operators, modified operators which shift the number operators P and Q 
while respecting the condition (29) which defines 93. 

Consider the creation operator f i r ,  which raises the value of P by one unit and 
commutes with Q. Applied to a vector belonging to ( p ,  0, - 4 )  within ( p ,  0,O)O 
( O , O ,  - q ) ,  it must produce a vector contained in ( p  + 1 , 0 , 0 ) 0 ( 0 , 0 ,  - q ) ,  that is to say, 
in the sum 

I?' 

where m' is the smaller of p + 1 and q. On the other hand, since E r  transforms according 
to the irrep ( 1,0,0), it must carry a vector belonging to ( p ,  0, - 4 )  into a vector belonging 
to ( p ,  0, - q )  0 ( 1 , 0, 0), which reduces as (Pais 1966) 

~ P , ~ , - q ~ O ~ ~ , ~ , ~ ~ = ~ ~ + ~ , ~ , - q ~ O ~ p ,  l ,-q)O(p,O, 1-q ) .  (35) 

A comparison of (34) and (35) shows that in general f i r  carries a vector from ( p ,  0, -9) 
within 93 into ( p  + 1,0, -q)O ( p ,  0, 1 - q) .  But the resultant vector is an eigenvector 
of P and Q with eigenvalues p + 1 and q, and the only vectors in 93 corresponding to 
such eigenvalues lie in ( p  + 1,0, - 4 ) .  Therefore E' is a sum of two operators. One, 
say fi")', shifts ( p ,  0, - 4 )  in 93 into ( p  + 1,0, - 9 )  in 93; the other, say E ( 2 1 r ,  shifts 
( p ,  0, - 9 )  in 93 into ( p ,  0, 1 - q )  outside 93. Now formulae (23) and (25) show not 
only that X = 0 on 93 but also that X = p  + q  +2 on ( p  + l,O, 1 - q )  within ( p  + 1 , 0 , 0 ) 0  
(0, 0, - 4 ) .  It then follows that, on vectors in 93, 

(X"-l)~i2"=ai'j'X (36) 

(3.7) 

x E i l ) r  = - ( I 1  cy 'X, 

Since 
f i ( I ) r  + ~ ( 2 j r  
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it follows from (36) that, on 93, 
( P  + Q + 1)E' + [ E ' ,  XI = ( P  + Q + 1)d ' ) ' .  (38) 

This operator ( P + Q + l)E("' has the desired shifting properties, prompting the defini- 
tion of the modified creation operator 

A'= ( P + Q  + l)Gr+[Er,  XI= ( P  + Q  + l ) & y E S p s ) p ' .  (39)  
Then A' is a Wigner operator on 93, carrying ( p ,  0, - 4 )  into ( p  + 1,0, - 4 )  while raising 
the eigenvalue of P by one unit and commuting with Q. Similarly, define 

(40)  B, = ( P + Q + 1)B' - (ci;sps)a, 

It also is a Wigner operator on 93, carrying ( p ,  0, - 9 )  into ( p ,  0, - q  - 1) while raising 
the eigenvalue of Q by one unit and commuting with P. It can now be checked directly 
that Ar and B, leave the condition (29 ) ,  and hence the subspace 93, invariant: for 
example the commutator of A' with asPS equals - 2 E r ( a S p s )  and hence vanishes on 93. 

The annihilation operators a, and pr leave invariant the condition (29)  and hence 
the subspace 93, and they require no modification. Since they are shift operators for 
P and Q they are also Wigner operators on 93. In fact, within 93, a,  carries ( p ,  0, - 4 )  
into ( p  - 1, 0, - 4 )  while p' carries it into ( p ,  0, 1 - q ) .  

Accordingly, take as conjugate to A' and B, above, 

A, = a ,  B'=  pr .  (41 1 
Then A ,  is not Hermitian conjugate to A'. In fact 

A'+ = a,( P + Q + 1) -pr(asps)  
which reduces to a,( P + Q + 1)(  = ( P + Q +2)a,)  on 93 because of (29) .  On 93 then, 

Art = ( P  + Q  + 2 ) A ,  

B: = ( P + Q + 2)B'. 

(43 )  

(44 )  
However these operators are related by a similarity transformation on 93 to operators 
A", B: and their Hermitian conjugates A: ,  B". To see this, consider the Hermitian 
operator S which, when applied to any eigenvector of P and Q with eigenvalues p 
and q, takes the value [( p + q + 1)!]1/2. Symbolically 

and similarly 

S ( P ,  Q)=[(P+Q+1)! ] ' /2 .  (45)  

S( P, Q)-' = [( P + Q + 1)!]-'/2. (46)  

This operator has a well defined inverse, which may be written as 

Define 

A " = S ( P ,  Q)-'A's(P, Q ) = A ' S ( P + l ,  Q ) - ' S ( P ,  Q ) = A r ( P + Q + 2 ) - ' / 2  (47)  

and similarly 

B: = S( P, Q ) - ' B r S ( P ,  Q )  = B,( P + Q +2)-1/2, 

A: = S( P, Q)- 'A ,S(  P, Q )  = ( P  + Q +2)"2A,  

B"= S( P, Q)-'B'S( P, Q )  = ( P  + Q  +2)'l2B'.  
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It then follows from (43) that, on 3, 

A"' = ( P + Q +2)-"2Art = ( P  + Q +2)"2A, = A: (49) 

and similarly 
Bit = B". 

The primed operators satisfy the same commutation relations as the unprimed ones, 
and they are also Wigner operators for U(3) on 93, with similar shifting properties for 
P and Q. However, the unprimed operators are preferred in what follows because of 
their simpler expressions and consequent easier manipulation: the unprimed, and not 
the primed operators, are simply polynomials in the boson operators. Their unusual 
conjugacy properties cause no difficulties, as will be seen. 

3. A realisation of S0(6,2) 

The modified creation and annihilation operators introduced in (39), (40) and (41) 
generate under commutation a representation of the Lie algebra of the simple Lie 
group S 0 ( 6 , 2 ) .  To see this, introduce the number operators P and Q, and the U(3) 
generators A: as in (17), (19) and ( lo) ,  and let 

- - 
Trs = p rE ' - p ' = - T", 

(51)  
Trs = a r P s  - asp, = - Ts, 
M = P + Q + 2 .  

Note that T" is Hermitian conjugate to T,, It is straightforward to verify the following 
commutation relations: 

[A', A'] = [Ar,  B,] = [B, E,] = 0, 

[A, AS] = 6:M +A:, 

[A, A,] = [A, B'] = [B', B'] = 0, 

[B', B,] = 6sM -A ; ,  

[A', B'] = T", [ A ,  BSI = Trs ,  

[A', Ai]= -8:As, [B, A:] = 6;br, 
[An A:] = 

[A', T,,] = s:B, - s:B,, 
[ B n  TsrI = 0, 

[A', T"]=O, 

[B', A:]= -8:B', 

[An Tsr1= 0, 

[B', T,,] = 6:A, - S:A,, 

[A, T s r ] =  S:Bs - S;B', 

[ B, T',]  = 6 :A' - s ;A', [B', T"]=O, 
[A', MI = -Ar, 

[A:, A:]= S:A: - SLA:, 

[A: ,  T1"]=8:T" +S,"T", 

[ T,, MI = 0 = [ Trs, MI. 

[ A ,  MI = A,  

[B, MI = 4, [B',  MI = B', 

[A:, Ti,]= -8;Tsu - 8: Trs, 

[A:, MI = 0, 

[ T,, T,,] = 0 = [ T", Ti"] ,  [T,,, T'"]=6:A:  +6:A:-S:AY-i3YA:, 
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Of the operators A', A, 8, B', A:, Trs, Trs and M, 28 are linearly independent. Now 
define an equivalent set of operators JAB ( = -JBA) for A, B = I ,  2 , .  . . ,8 ,  by setting 

J2r-1,2s-1 = -t i(  Tr, +A: - A: + T") ,  J z r - l , z s =  -t(T,,+A:+A:- Trs), 

(53) J2r,2s = ti( T,, -A: +A: + T"), 
~ 7 , 2 '  - I = - f ( A, + A' - B, - B '), 

J8,2r-1 =$(Ar - A r  + B , -  B') ,  J 8 , 2 r = f ( A r + A r + B r + B r ) ,  Jn = M, 

for r, s = 1,2,3. Then the commutation relations (52) assume the familiar form for 
S0(6,2) ,  

J7,2'=ti(A,-Ar-Br +B') ,  

[JAB, JCDl=i(gACJBD +gBDJAC -gBCJAD -gADJBC) (54) 

where the metric tensor gAB = diag( 1, 1, 1, 1, 1, 1 ,  - 1, -1) .  
Note the compact SO(6) subgroup associated with the Hermitian operators Jabr 

a, b = 1,2 , .  . . ,6 ,  or equivalently, with the Hermitian linear combinations of the T,,, 
T" and A:; and the maximal compact S 0 ( 6 ) 0 S 0 ( 2 )  subgroup associated with this 
set of operators enlarged by the addition of J78( = M ) .  Note also the U(3) < SO(6) 
subgroup associated as before with the operators A: of (lo),  and the subgroup 
SU(3) < U(3) < SO(6) < S0(6,2),  associated as before with the Ti of (9). 

The relations inverse to (53) are given by 

A, = -I( 2 J 7,2r-I +iJ7,2r + i J8 ,2 r - I  -J8,2r), 

8, =f( J7.2r-l +iJ7,2r-iJ8,2r-I +Js,Zr), 

A: = f ( i J2 r - I ,2 s - 1 - J2 r - 1.2s + Jz r,2s - 1 + i J2 r,2 s ) 7 

T r s  = $( iJ2 r - I ,2s - I - 32 r - I ,2s - J2 r.2 s - 1 - iJ2 r,2s 9 

- I(iJ2r-1,2s-l + 4 - 1 , 2 s  +J2r,2s-l -iJ2r,2s), 

(55) 
Br=t(J7,2r-l - i J 7 , 2 r + i J s , ~ r - 1  +J8,2r), 

M = 578, 
r s  - I 

for r, s =  l ,2 ,3 .  
The operators JAB define a representation of the Lie algebra of S0(6,2)  in the 

whole of the six-boson Fock space .Fe generated from 4o by the action of the 5' and 
@,. Consider instead the subspace 93' c .F6 which is generated from (bo by the application 
of arbitrary finite polynomials in the modified operators, A', A, B, B'. This subspace 
is invariant under the action of the S0(6,2)  operators JAB, and so carries itself a 
subrepresentation of the S0(6,2)  Lie algebra. In order to see this, it suffices to note 
that the A', A, Er and B' leave 93' invariant as a result of its definition, and also that 
they generate the whole of the S0(6 ,2)  algebra under commutation, as the relations 
(52) show. 

The condition (29) holds for every vector 4 in 93'. This follows because 4o satisfies 
the condition, and the modified creation and annihilation operators which generate 
93' from rb0 leave the condition invariant, as was shown in § 2. It follows that 973' is a 
subspace of the space W introduced there, but in fact the two spaces carry the same 
representation of U(3) and so are one and the same, as will be shown in 0 4. 

Since the A, B' are not Hermitian conjugate to A', B, the representation of the 
S0(6,2)  algebra defined by (53) is not Hermitian: the operators J7a and J8=, a = 
I ,  2 , .  . . , 6  are not Hermitian. (Note that the representation of the S 0 ( 6 ) 0 S 0 ( 2 )  
subalgebra is Hermitian because T, and T" are Hermitian conjugate, as are A: and 
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A;.) However, the restriction of this representation to 93' is equivalent to an Hermitian 
one because the algebra is generated by (A, Ar)  and (Br, I%), and these are similar 
on 8' to Hermitian conjugate pairs (A;, A"), (B", B ; ) ,  as shown previously. (It does 
not follow that the representation on the larger space 9 6  is equivalent to an Hermitian 
representation.) 

How can the representation of the S0(6,2)  algebra on 8' be characterised? It is 
not hard to see, as will be noted in § 4, that it is irreducible. Furthermore it is reasonably 
straightforward to check that the Casimir operator 

$ g A C g B D J A B J C D ,  (56) 

where g A B  = g A B ,  has the value -8 on Bf. This is not, of course, enough to identify 
the representation, but the other three independent invariants (one is a polynomial of 
degree six in the J A B )  have not been evaluated. 

If the free indices in (53) are restricted to run over I ,  2 rather than 1,2,3, the 
subscripts 7 and 8 in (53) are replaced by 5 and 6, the factor ( P + Q + l )  in (39) and 
(40) is replaced by ( P  + Q), and ( P  + Q +2) in (5 1 ) is replaced by (P + Q + 1 ), then 
one obtains a representation of the Lie algebra of S0(4,2) ,  which may then be restricted 
to the subspace of F4 on which a$' = O .  This sub-representation is analogous to the 
representation of the S0(6,2)  algebra on % I ,  and is identifiable as equivalent to one 
of the well known 'ladder' representations of the S0(4,2)  algebra. (It corresponds to 
A = 0 in the notation of Mack and Todorov (1969), and belongs to the 2 or 2* series, 
depending on whether the J A B  are defined just as in (53), or have JS6 and J6a, a = 1,2,3,4, 
replaced therein by their negatives.) This follows because the operators J A B  (A, B = 
1,2, . . . , 6 )  in that S0(4,2)  subrepresentation can be shown to satisfy the relations 

J A C J ~ B  SJBCJ'A = - f g A B J c D J C D ,  ' J  2 AB J A B = - 3  (57) 

where j C B  = gCDJDB etc, and g A B  = g A B  = diag( 1, I ,  1,1, -1, -1). Such relations are 
known to characterise these ladder representations of S0(4,2)  (Barut and Bohm 1970). 

Note that what is involved here is not the standard realisation of a ladder representa- 
tion on g4. Some of the J A B  are cubic in the boson operators, whereas they are all 
quadratic in the standard realisation. 

These results in the S0(4,2)  case suggest that in the S0(6,2)  case, it may be possible 
to find another realisation, with each J A B  a quadratic expression in boson operators. 
(However, the number of boson pairs needed may exceed six.) The modified creation 
and annihilation operators would then have a quadratic realisation in terms of boson 
operators. This interesting possibility is being explored (Bracken 1984). 

In concluding this section, note that the definitions (39), (40) and (41) imply 

A'B, = BA-' = (asps)2(arp'),  

A'B, = B j r =  A,B'= B'A, = 0. 

ArBr = B'A, = a#'. (58) 

(59) 

Therefore the following relations hold on 8': 

The first two of these will play a key role in 8 4. 
It also follows from the definitions given that 

A'A, - P( P + Q + 1) = A A '  - ( P +2)(  P + Q +3) = - (a'P;)( a#'), 

B,B'-Q( P + Q +  1 )  = B'Br-(Q+2)(  P + Q  +3)  = - ( C T ~ / T ~ ) ( C X ~ ~ ' ) ,  
(60) 

P='[A 3 n A']-' 6[Br, B r I -  1, Q=f[B', B,]-:[A, A']- 1, (61) 
so that 
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and hence (P+1)  and ( Q + l ) ,  but not the number operators P and Q themselves, 
are contained in the S0(6,2)  Lie algebra. Equations (60) also show that, on 3', 

A'A, = P( P + Q  + l ) ,  B'B' = Q( P + Q + 1 ), 
(62) 

AA' = ( P + 2)( P + Q + 3), B'B, = ( Q  +2)( P + Q  +3).  

4. irreducible tensor representations of SU(3) 

For fixed integers p 2 0 and q 2 0, consider all vectors of the form 

4;::- = A',Lp . , . Af&Bl. . . B,&, (63) 

in which p of the A-operators and q of the B operators appear, and the indices run 
over 1 to 3 independently. Each such vector evidently lies in 9' and is an eigenvector 
of P and Q with eigenvalues p and q. Note from the relations (52) that the order of 
the A- and B-operators here is immaterial. From the commutation relations ( 5 2 )  and 
the fact that A;+,  = 0, it follows that 
A;@;~,::- = 8;4us...r 

kl ... m +6z@G::;k +. . * +si4g,::k 
- s;+:::'m - 6 ; ( b y m  - .  . . - 6;4;:::, (64) 

so that 42::- transforms in a manifestly covariant way, as a U(3) tensor. This tensor 
is irreducible, corresponding to the representation ( p ,  0, -4) of U(3). In order to see 
this, note from the relations ( 5 2 )  that 4 is separately symmetric in its upper and lower 
indices, and from the relations (59) that 

(65) 

It is known that a tensor satisfying these two conditions is U(3) and SU(3) irreducible, 
corresponding to the irrep ( p  +q, q )  of SU(3), and hence to an irrep of U(3) labelled 
( p  +r,  r, r -  q) for some r (Pais 1966). Since it follows from (64) that 

4;:;; = (A'B,)AS, . . A'B,. . . Bm40 = 0. 

A;4;::'m = (P - q14;i::;, 

and since it is known (Okubo 1962) that, on ( p  + r, r, r - q), 

A ;  = ( p  - q  +3r),  (67) 

it follows that r = 0 and that 42::; corresponds to the U(3) irrep ( p ,  0, -4). It can be 
seen now that every different irrep of SU(3) occurs just once as p and q in (63) run 
over the non-negative integers independently. 

Every vector in 93' can be written as a finite linear combination of vectors of the 
form (63). This follows from the definition of 3', the commutation relations (52), and 
the fact that, as is easily checked from (8) and the definitions above, 

( M  -2)40 = A& = B'4o = 0, T&, = T"4, = A i 4 ,  = 0. (68) 

For example, consider the vector A,BsA'4,: 

ArBSA'4, = BSAA'4, + TrsA'4, 
= B,A'A,~,  + Bs ( 6 : ~  + A : )  4, + A'T,~, + ( s :Bs  - s:Br)4, 

= 3 6 :B+#Jo - 6:Br40 = 3 6 :4s - (69) 
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It then follows that 93' has the same U(3) content (28) as 93, and since it has already 
been shown that 93' is a subspace of 93, it can be concluded that these two subspaces 
are indeed one and the same. The notation 93' will henceforth be dropped. 

Since A' carries the U(3) irrep ( p ,  0, -4) into ( p  +1,0, -q ) ,  it is clear that there 
is no proper subspace of 93 which is both U(3) invariant, and invariant under the 
action of A'. It follows, afortiori, that there is no proper subspace invariant under 
the action of the whole S0(6 ,2)  algebra (53), so the representation of this algebra on 
$33 is indeed irreducible, as suggested earlier. 

What are the orthogonality properties and lengths of the vectors (63)? The scalar 
product 

can of course be calculated in any particular case by writing the A- and B- operators, 
in expressions like (63), in terms of boson operators, using the definitions (39) and 
(40), and by then applying the usual boson calculus. However, the problem can also 
be approached somewhat more directly as follows. 

Suppose the left-hand member of the scalar product (70) has p upper and q lower 
indices, while the right-hand member has p' upper and q' lower indices. Then the 
scalar product vanishes unless p = p'  and q = q', because the two members are eigenvec- 
tors of the Hermitian operators P and Q with eigenvalues ( p ,  q ) ,  ( p ' ,  q ' )  respectively. 
When each member has p upper and q lower indices, and so corresponds to the irrep 
( p ,  0, -9) of U(3), it follows by covariance that the scalar product must be a multiple 
of the numerical tensor (a linear combination of products of Kronecker deltas) 

(71) 

whose definition is completed by the requirement that it is separately symmetric in 
each of the bracketed sets of indices, and vanishes if any round-bracketed (resp. 
square-bracketed) upper index is contracted with any round-bracketed (resp. square- 
bracketed) lower index. For example 

(72) 

~ ( p u  ... ~ ) : [ k f  ... m j  - a p s o  k f  
[ r s  ... f ] ; ( K A , . . p )  - r s . . . s ; s ~ s A  . . . + *  * . 9 

q;;:C;ii;,j= s:s:sf: +s:s;s': -;(s:s:s; +sp,s:s; +s:s:s': +sp,s;s':). 
Then, if both tensors belong to ( p ,  0, - q ) ,  

(73) ( 4:;,::fm, + P u , , . T  
) ;  [ k l  ... m ]  

K A . . . ~ )  = e ( p ,  q)Dfp""" rs ... I ] ;  ( K A  ... & )  

with 8 ( p ,  q )  a number depending only on p and q. 
Consider 

X = 4:::::: = (A3)'((B3)'@o. (74) 

It follows from (43) and (44) and the shifting properties of A, and B' that the Hermitian 
conjugate of (A3)P(B3)' is 

( P + Q + 2)B3(  P + Q +2)B3 . , , ( P + Q +2)B3( P + Q +2)A3 . . . ( P + Q +2)A3 

= ( P + Q +2)( P + Q + 3 )  . . . ( P + Q + p  + q + 1)(B3)4(A3)p, (75) 

so that 
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(77) 

For any vector of the form x, one has 

A:X = ( A : - A ;  -A:)x  = A:X = ( P -  Q ) X ,  

using (52). Then, also with the help of these relations (52), one has 

[A3A3 - ( P  + 1)(  P +2),  A3]x = { [ A , ,  A3]A3 -2( P + l)A3}x 
= ( Q  - P +A:)A3x = O .  (78) 

Furthermore, again from (52), 

[A3A3 - ( P + I ) (  P +2),  B3]x = 0. (79) 

Since {A3A3 - ( P + 1)( P +2)}  vanishes on (bo, it then follows that it vanishes on any 
vector of the form x. Similarly {B3B3 - ( Q  + I ) (  Q +2)}  vanishes on such vectors. Thus 
A3A3 and B3B3 can be replaced by ( P + 1)(  P +2) and ( Q  + 1) (  Q +2),  respectively, on 

5. Concluding remarks 

A model of SU(3) has been constructed in the space 9 obtained by applying arbitrary 
polynomials in modified creation operators to a vacuum vector. This space carries an 
irrep of the Lie algebra of S0(6 ,2 ) ,  so the model can aptly be called an S 0 ( 6 , 2 )  
model, just as Schwinger’s model can be called a UW, model (see 0 1). The question 
arises whether or not a simple model for SU( n) ,  n # 3,  can be obtained; in other words, 
can one find for each n an irrep of (the Lie algebra of)  a corresponding non-compact, 
simple Lie group K > SU(n), which contains in direct sum each different irrep of 
S U ( n )  exactly once. Indeed, the question extends from SU(n) to other compact Lie 
groups. Positive answers can readily be given in some cases: for example any infinite- 
dimensional irrep of the homogeneous Lorentz group SO(3, 1 )  labelled [0, c] in the 
usual [k,, c ]  notation, with c any non-integral complex number, contains every irrep 
of SO(3) exactly once (Gel’fand et a1 1963) and so defines a model for that group. 
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Note that the irrep of the non-compact group defining the model need not be unitary, 
as this example shows: the irrep of SO(3, 1) is only unitary if c is pure imaginary, or 
lies in the interval [0, 1).  

Another question concerns the realisation of a model, if it exists, in terms of boson 
operators. When this is possible, as in the S0(6,2)  model for SU(3), such a realisation 
has obvious computational advantages for the construction of the irreps of the compact 
group. 

It has already been indicated above that the irrep of the S0(6,2)  algebra in 93 has 
an analogue for S0(4,2) .  In fact it has such an analogue for S0(2n, 2) n = 1,2,4,5,  . . . . 
Simply take the range of free indices in (53) to be 1,2, . . . , n rather than 1,2,3 ; replace 
the subscripts 7 and 8 in (53) by (2n + l ) ,  (2n +2) ;  replace the factor ( P  + Q + 1)  in 
(39) and (40) by ( P + Q + n - 2 ) ;  and replace ( P + Q + 2 )  in (51) by ( P + Q + n - 1 ) .  
Then a representation of the Lie algebra of S0(2n, 2) on the Fock space .F2,, is obtained, 
and it can be restricted to an irreducible subspace on which a@' vanishes. Does this 
subrepresentation define a model for SU( n )  when n # 3? The answer is surely no. 
Although the modified creation and annihilation operators are in each case Wigner 
operators for SU(n),  it is not hard to see that for n = 2, irreps of SU(2) occur more 
than once, while for n > 3, some irreps of SU( n) do not occur at all. Thus SU(3) 
occupies a special place in this context, a rather surprising result. 

In the case n = 2, there is a simple way to overcome this difficulty: restrict attention 
to the subspace obtained by applying to the vacuum vector, arbitrary polynomials in 
the A-operators only (or the a-operators only). This subspace carries every irrep of 
SU(2) exactly once, but it does not carry a representation of the full S0(4,2)  algebra. 
Instead, it carries an irrep of the subalgebra spanned by A, A', and A: + 6:M ( M  = P + 
Q + 1  in this case). This is the Lie algebra of SU(2, l ) ,  so it can be seen that there 
does exist a simple model for SU(2), namely an SU(2, 1 )  model, as well as Schwinger's 
UW2 model which is not semi-simple. It could not be claimed that this SU(2, 1 )  model 
is as attractive as Schwinger's model from the point of view of constructing and 
analysing the representations of SU(2). It follows that simplicity of the non-compact 
group in terms of which a model for a compact subgroup is defined may not be an 
advantage. 

In Schwinger's model, all Wigner tensor operators for SU(2) can be constructed 
very simply from the boson creation and annihilation operators. The situation is quite 
similar for the S0(6 ,2)  model for SU(3). Introduce the completely antisymmetric 
numerical SU(3) tensors E ' ~ ' ,  E , ~ ,  with 

E ' = i E rSfAS& E ,  = iErsIBSAr, (85) 
which can be seen from (43) and (44) to be Hermitian conjugate to each other on $23. 
Then E' ,  like A' and B', is a contravariant SU(3) vector (though, unlike A' and E', it 
is not a contravariant U(3) vector), while E ,  A, and B, are covariant SU(3) vectors. 
Thus, with T :  as in (9 ) ,  one has 

= = +1, and define 

[ E ~ ,  T:]= - 6 : ~ '  + ~ S : E ' ,  (86) 

[ E ,  T:] = a:&, - $ : E ,  

just as for Ar and B', and similarly 

(87)  
just as for A, and a, 

The operators E ~ ,  A' and E' form a complete set (Louck and Biedenharn 1973) of 
contravariant SU(3)-vector Wigner operators, with the shifting values (-1, + l ) ,  ( + l ,  0) 
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and (0, - 1 )  for the labelling operators ( P ,  Q ) .  (Recall that the SU(3) irreps are labelled 
( p  +q,  q ) ,  where p and q are the eigenvalues of P and 0. Thus E ~ ,  for example, shifts 
the irrep ( p  +q ,  q )  to ( p  + q, q + l ) . )  Similarly E ,  A ,  and B, form a complete set of 
covariant SU(3)-vector Wigner operators, with shifting values ( + 1 ,  - l) ,  ( -1 ,O)  and 
(0, +1) for ( P ,  Q). Other simple vector operators which can be constructed, such as 
A;B", tum out to be multiples (by SU(3) scalars) of these basic ones, in accordance 
with known general results (Green 1971). Note that since no SU(3) scalar can, on W, 
fail to commute with P and Q, products like &'An BIE, etc must vanish there. 

Higher-rank irreducible tensor operators which are also Wigner operators can easily 
be constructed from the six basic vector operators. For example, nine obvious irreduc- 
ible second-rank mixed tensor operators ('octet' operators) can be constructed. 
Together with their shifting values for ( P ,  Q ) ,  they are 

&'AS ( - 2 ,  +l) ,  E ' B ,  ( - 1 ,  +2) ,  

A'&, (+2 ,  -l) ,  A'B, ( + l ,  + l ) ,  

B'E, ( + l ,  - 2 ) ,  B'A, (-1, -l) ,  

E r & ,  -fa:(&'&,) (0, O), 

A'A, -$S:(A'A,)  (O,O), B'B, - fa : (B 'B , )  (0,O). 

Of these, only eight are independent, as only two of the last three are independent. 
One finds that 

E,&, - $ ~ : ( E ' E , )  = ( P  +Q +3)*[G:-f( P -  Q + 6 ) T : ] ,  

A'A, - fa : (A 'A , )  = G: + f ( 2 P  + Q -3) Ti ,  

B'B, -fa;( B'B,) = G: - f (  P + 2 ~  + 9 )  T:, 

G: = T: Ti -fa:( T: T:). 

(89) 

where 

(90)  

In fact any irreducible second-rank mixed tensor operator on W which has the shifting 
values (0,O) (i.e. one which commutes with P and Q and so leaves invariant each 
irrep of SU(3)) must be a linear combination (with SU(3)-scalar coefficients) of T ;  
and G:, in accordance with a result obtained by Okubo (1962).  
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