Creation and annihilation operators for $\operatorname{SU}(3)$ in an $\mathrm{SO}(6,2)$ model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 172581
(http://iopscience.iop.org/0305-4470/17/13/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 18:10

Please note that terms and conditions apply.

Creation and annihilation operators for $\operatorname{SU}(3)$ in an SO(6, 2) model

A J Bracken and J H MacGibbon \dagger
Department of Mathematics, University of Queensland, St Lucia, 4067, Queensland, Australia

Received 16 February 1984, in final form 11 May 1984

Abstract

Creation and annihilation operators are defined which are Wigner operators (tensor shift operators) for $\mathrm{SU}(3)$. While the annihilation operators are simply boson operators, the creation operators are cubic polynomials in boson operators. Together they generate under commutation the Lie algebra of $\mathrm{SO}(6,2)$. The vector space generated from a vacuum vector by repeated application of the creation operators carries an irreducible representation of the $\mathrm{SO}(6,2)$ algebra, equivalent to an hermitian representation, and also carries in direct sum every different irreducible representation of $\mathrm{SU}(3)<\mathrm{SO}(6,2)$ exactly once. A model for $\mathrm{SU}(3)$, in the sense of Bernstein, Gel'fand and Gel'fand, is therefore defined. The different $\mathrm{SU}(3)$ irreducible representations appear explicitly as manifestly covariant, irreducible tensors, whose orthogonality and normalisation properties are examined. Other Wigner operators for $\operatorname{SU}(3)$ can be constructed simply as products of the new creation and annihilation operators, or sums of such products.

1. Introduction

The representation theory of the groups $\mathrm{SU}(n)$ continues to play an important role in several areas of quantum mechanics. While the theory has been most fully developed for $S U(2)$ because of its association with angular momentum (see in particular Gel'fand et al (1963), Schwinger (1965) and Biedenharn and Louck (1981)), it is also true that many aspects have been extensively developed for larger values of n. In the present context, the works of Baird and Biedenharn (1963, 1964, 1965), Biedenharn et al (1967, 1972), Biedenharn and Louck (1968), Arisaka (1972), Holman and Biedenharn (1971), Louck and Biedenharn (1973) and Louck et al (1975) are particularly relevant.

The present work is concerned with the problem of constructing a simple model for $\operatorname{SU}(3)$, a group which occupies a favoured position in modern particle theory. Following Bernšteǐn et al (1975), a model of a compact Lie group G is defined as a realisation of a representation of G which consists of a direct sum of irreducible representations (irreps), containing exactly one representative from every equivalence class of irreps of G. A model of a group may be regarded as providing a minimal framework or skeleton for its representation theory.

Different models will exist for a given G. These will be equivalent as representations, but one model may have advantages over others for certain computational or explicative purposes because of its particular realisation.

[^0]This is well illustrated in the case of $\operatorname{SU}(2)$, for which several models can be found in the literature quoted above, by reference to Schwinger's model (Schwinger 1965), which exploits the computational advantages of the boson calculus. Having introduced a pair of creation operators $\bar{\alpha}^{r}(r=1,2)$, their Hermitian conjugate annihilation operators α_{n} and a normalised 'vacuum vector' ϕ_{0}, one can easily construct basis vectors for each finite-dimensional irrep of $\operatorname{SU}(2)$, generated by (the hermitian linear combinations of) the operators

$$
\begin{equation*}
T_{s}^{r}=\bar{\alpha}^{r} \alpha_{s}-\frac{1}{2} \delta_{s}^{r}\left(\bar{\alpha}^{t} \alpha_{t}\right), \tag{1}
\end{equation*}
$$

or equivalently, in a more familiar notation, by
$J_{1}=\frac{1}{2}\left(\bar{\alpha}^{1} \alpha_{2}+\bar{\alpha}^{2} \alpha_{1}\right), \quad J_{2}=\frac{1}{2} \mathrm{i}\left(\bar{\alpha}^{2} \alpha_{1}-\bar{\alpha}^{1} \alpha_{2}\right), \quad J_{3}=\frac{1}{2}\left(\bar{\alpha}^{1} \alpha_{1}-\bar{\alpha}^{2} \alpha_{2}\right)$.
The two-boson Fock space \mathscr{F}_{2} consisting of all finite linear combinations of vectors of the form $\left(\bar{\alpha}^{1}\right)^{m}\left(\bar{\alpha}^{2}\right)^{n} \phi_{0}$, with m and n non-negative integers, decomposes into a direct sum of $\operatorname{SU}(2)$-irreducible subspaces. The basis vectors for the $(2 j+1)$ dimensional subspace \mathscr{V}_{j} on which the Casimir operator $\frac{1}{2} T_{s}^{r} T_{r}^{s}\left(=\left(J_{1}\right)^{2}+\left(J_{2}\right)^{2}+\right.$ $\left.\left(J_{3}\right)^{2}\right)$ has the value $j(j+1)$, can be taken to be

$$
\begin{equation*}
\left\{\left(\bar{\alpha}^{1}\right)^{j+m}\left(\bar{\alpha}^{2}\right)^{j-m} /[(j+m)!(j-m)!]^{1 / 2}\right\} \phi_{0}, \quad m=j, j-1, \ldots,-j, \tag{3}
\end{equation*}
$$

corresponding to eigenvalues m of J_{3}. It can be seen that

$$
\begin{equation*}
\mathscr{F}_{2}=\mathscr{V}_{0} \oplus \mathscr{V}_{1 / 2} \oplus \mathscr{V}_{1} \oplus \ldots \tag{4}
\end{equation*}
$$

Thus every different irrep of $\operatorname{SU(2)}$ occurs exactly once in the representation generated by the T_{s}^{r} on \mathscr{F}_{2}, and a model is defined.

The operators $\alpha_{r}, \bar{\alpha}^{r}, A_{s}^{r}\left(=\bar{\alpha}^{r} \alpha_{s}\right)$ and I (unit operator), or rather the nine independent Hermitian linear combinations of these operators, can be regarded as generators of a unitary irrep of a Lie group UW_{2} with Lie algebra defined by the commutation relations

$$
\begin{align*}
& {\left[\alpha_{r}, \alpha_{s}\right]=0=\left[\bar{\alpha}^{r}, \bar{\alpha}^{s}\right], \quad\left[\alpha_{r}, \bar{\alpha}^{s}\right]=\delta_{r}^{s} I,} \\
& {\left[\alpha_{r}, I\right]=\left[\bar{\alpha}^{r}, I\right]=\left[A_{s}^{r}, I\right]=0,} \\
& {\left[\alpha_{r}, A_{t}^{s}\right]=\delta_{r}^{s} \alpha_{t}, \quad\left[\bar{\alpha}^{r}, A_{t}^{s}\right]=-\delta_{t}^{r} \bar{\alpha}^{s},} \tag{5}\\
& {\left[A_{s}^{r}, A_{u}^{\prime}\right]=\delta_{s}^{\prime} A_{u}^{r}-\delta_{u}^{r} A_{s}^{\prime} .}
\end{align*}
$$

This group UW_{2}, which is neither compact nor semi-simple, has the Weyl-Heisenberg group W_{2} as a subgroup, associated with the generators $\bar{\alpha}^{r}, \alpha_{r}$ and I; and $\mathrm{U}(2)$ as maximal compact subgroup, associated with the A_{s}^{r}. Schwinger's model of $\operatorname{SU}(2)$ may be regarded as defined by this unitary irrep of UW_{2} on the closure of \mathscr{F}_{2} : when regarded as a representation of $\mathrm{SU}(2)<\mathrm{U}(2)<\mathrm{UW}_{2}$, it contains every different (unitary) irrep exactly once.

In attempting to generalise Schwinger's model to $\operatorname{SU}(3)$, one naturally considers at first the irrep of UW_{3} on \mathscr{F}_{3}. Thus a triplet of boson pairs $\bar{\alpha}^{r}, \alpha_{r}(r=1,2,3)$ can be introduced in place of the doublet used for $\operatorname{SU}(2)$, and $\mathrm{SU}(3)$ generators can be defined as

$$
\begin{equation*}
T_{s}^{r}=\bar{\alpha}^{r} \alpha_{s}-\frac{1}{3} \delta_{s}^{r}\left(\bar{\alpha}^{t} \alpha_{\mathrm{t}}\right), \tag{6}
\end{equation*}
$$

acting on the three-boson space \mathscr{F}_{3}. However, this does not define a model for $\operatorname{SU}(3)$ because, as is well known (Baird and Biedenharn 1963, 1964, 1965), not all irreps
occur within the representation generated by these T_{s}^{r} (although those that do occurthe 'completely symmetric' ones, corresponding to one-rowed Young diagrams-occur once only). This can be remedied in (at least) two different ways.

One way, as expounded in detail by Baird and Biedenharn, is to introduce two (or more) triplets of boson pairs $\bar{\alpha}^{r}, \alpha_{r}, \bar{\beta}^{r}, \beta_{r}$ (here any α-operator commutes with any β-operator), and to define, in place of (6),

$$
\begin{equation*}
T_{s}^{r}=\bar{\alpha}^{r} \alpha_{s}-\frac{1}{3} \delta_{s}^{r}\left(\bar{\alpha}^{t} \alpha_{t}\right)+\bar{\beta}^{r} \beta_{s}-\frac{1}{3} \delta_{s}^{r}\left(\bar{\beta}^{t} \beta_{t}\right) . \tag{7}
\end{equation*}
$$

These generate on \mathscr{F}_{6} a unitary representation of $\mathrm{SU}(3)<\mathrm{UW}_{6}$ which certainly contains every irrep at least once. Unfortunately a model is not thereby defined, because repetitions occur: for example, the vectors $\bar{\alpha}^{r} \phi_{0}$ and $\bar{\beta}^{r} \phi_{0}$ span distinct but equivalent three-dimensional irreps. This difficulty can be overcome, as Holman and Biedenharn (1971) have shown, by systematically restricting attention to a particular subspace of \mathscr{F}_{6} which does contain each irrep of $\mathrm{SU}(3)$ exactly once, and so defines a model. Nevertheless, an attractive feature of Schwinger's model is now missing: the model does not admit every vector that can be obtained from the vacuum vector by application of the given creation operators. Furthermore, there are certainly many other ways of restricting \mathscr{F}_{6} to a subspace that defines a model.

The second way of extending the three-boson representation of $\mathrm{SU}(3)$ to a model is again to introduce, together with $\bar{\alpha}^{r}$ and α_{r}, a second triplet of boson pairs, this time labelled $\bar{\beta}_{r}, \beta^{r}$, so that

$$
\begin{equation*}
\left[\alpha_{r}, \bar{\alpha}^{s}\right]=\delta_{r}^{s}=\left[\beta^{s}, \bar{\beta}_{r}\right], \quad \alpha_{r} \phi_{0}=\beta^{r} \phi_{0}=0, \tag{8}
\end{equation*}
$$

where ϕ_{0} is the vacuum vector. (All other commutators vanish.) The operators

$$
\begin{equation*}
T_{s}^{r}=\bar{\alpha}^{r} \alpha_{s}-\frac{1}{3} \delta_{s}^{r}\left(\bar{\alpha}^{t} \alpha_{t}\right)-\bar{\beta}_{s} \beta^{r}+\frac{1}{3} \delta_{s}^{r}\left(\bar{\beta}_{t} \beta^{t}\right) \tag{9}
\end{equation*}
$$

replace those in (6) or (7), and satisfy the same commutation relations. Whereas the creation operators $\bar{\alpha}^{r}$ form a contravariant $\mathrm{U}(3)$-vector, and the annihilation operators α_{r} a covariant $\mathrm{U}(3)$-vector, the reverse is true for the creation operators $\bar{\beta}_{r}$ and annihilation operators β^{r}. Thus, having defined the $\mathrm{U}(3)$ generators

$$
\begin{equation*}
A_{s}^{r}=\bar{\alpha}^{r} \alpha_{s}-\bar{\beta}_{s} \beta^{r}, \tag{10}
\end{equation*}
$$

which satisfy the usual relations

$$
\begin{equation*}
\left[A_{s}^{r}, A_{u}^{t}\right]=\delta_{s}^{t} A_{u}^{r}-\delta_{u}^{r} A_{s}^{t}, \tag{11}
\end{equation*}
$$

one finds

$$
\begin{equation*}
\left[\bar{\alpha}^{r}, A_{t}^{s}\right]=-\delta_{t}^{r} \bar{\alpha}^{s}, \quad\left[\alpha_{r}, A_{t}^{s}\right]=\delta_{r}^{s} \alpha_{t} \tag{12}
\end{equation*}
$$

but

$$
\begin{equation*}
\left[\bar{\beta}_{r}, A_{t}^{s}\right]=\delta_{r}^{s} \bar{\beta}_{t}, \quad\left[\beta^{r}, A_{t}^{s}\right]=-\delta_{t}^{r} \beta^{s} . \tag{13}
\end{equation*}
$$

This approach to $\operatorname{SU}(3)$ has been developed by Takabayasi (1964) and, more fully, by Arisaka (1972).
(The operators $\bar{\alpha}^{r}, \bar{\beta}_{r}$ may be thought of as 'quark' and 'anti-quark' creation operators, respectively, and correspond to conjugate three-dimensional irreps of $U(3)$. Actually, the $\mathrm{U}(3)$ generators would be $A_{s}^{r}+\delta_{s}^{r}\left(\bar{\beta}_{t} \beta^{t}\right)$ rather than A_{s}^{r} as in (10), if the usual convention were adopted that the labelling of an irrep of $\mathrm{U}(3)$ by its highest weight should match exactly its labelling by the row lengths of a corresponding Young diagram. Then the vectors $\bar{\alpha}^{r} \phi_{0}$ and $\bar{\beta}_{r} \phi_{0}$ would correspond to irreps labelled ($1,0,0$)
and $(1,1,0)$, whereas the generators (10) lead to a labelling by highest weights as $(1,0,0)$ and $(0,0,-1)$. The choice (10) and associated labelling by highest weights is more natural here and in what follows as it treats the α-operators and β-operators symmetrically, and leads to the simple relations (12) and (13).)

In the six-boson space \mathscr{F}_{6} spanned by all the vectors that can be obtained from ϕ_{0} by repeated application of the creation operators $\bar{\alpha}^{r}$ and $\bar{\beta}_{r}$, the $\mathrm{SU}(3)$ operators (9) generate a unitary representation that again contains every different irrep at least once. But again, a model is not defined because repetitions occur. For example, $\left(\bar{\alpha}^{\prime} \bar{\beta}_{r}\right)^{N} \phi_{0}$ is a singlet for every non-negative integer N. Arisaka has shown how to project onto $\mathrm{SU}(3)$-irreducible subspaces, and it is therefore clear that various subspaces carrying every different irrep exactly once-and hence defining models-can be identified. Once again, however, there is no unique way to proceed, and whatever procedure is adopted, certain of the vectors obtainable by applying the boson creation operators to ϕ_{0} have to be excluded from consideration.

Why does this complication arise for $\mathrm{SU}(3)$, in both the approaches described, but not for $\mathrm{SU}(2)$? A partial answer is that, in the $\mathrm{SU}(2)$ case, the operators $\bar{\alpha}^{r}, \alpha_{r}(r=1,2)$, are not only contravariant and covariant operators, respectively, with respect to $\mathrm{U}(2)$ and $\operatorname{SU}(2)$, they are also Wigner operators for both groups (Biedenharn and Louck 1981). That is to say, they are shift operators for the representation labels of these groups, and in particular for the $\operatorname{SU}(2)$ representation label j. When an $\bar{\alpha}^{r}$ is applied to a vector with a definite value of j, a vector is obtained with a value of j increased by one half unit. Thus one obtains from $\phi_{0}(j=0)$ the vectors $\bar{\alpha}^{r} \phi_{0}\left(j=\frac{1}{2}\right), \bar{\alpha}^{r} \bar{\alpha}^{s} \phi_{0}(j=1)$ etc, and automatically generates a chain of $\operatorname{SU}(2)$-irreducible subspaces. The shifting property for the $\bar{\alpha}^{r}$ and α_{r} can be made explicit: the invariant $\frac{1}{2} T_{s}^{r} T_{r}^{s}$ for $\operatorname{SU}(2)$, with T_{s}^{r} as in (1), is found to satisfy

$$
\begin{equation*}
\frac{1}{2} T_{s}^{r} T_{r}^{s}=J(J+1), \quad J=\frac{1}{2} \bar{\alpha}^{r} \alpha_{r}, \tag{14}
\end{equation*}
$$

and J can be identified with the labelling operator whose eigenvalue is j. It is then evident from the boson commutation relations that

$$
\begin{equation*}
J \bar{\alpha}^{r}=\bar{\alpha}^{r}\left(J+\frac{1}{2}\right), \quad J \alpha_{r}=\alpha_{r}\left(J-\frac{1}{2}\right) . \tag{15}
\end{equation*}
$$

In the approach of Baird and Biedenharn to $\mathrm{U}(3)$ and $\mathrm{SU}(3)$, the $\bar{\alpha}^{r}$ and $\bar{\beta}^{r}$ are three-vector operators, but they are not Wigner operators. For example, when $\bar{\beta}^{r}$ is applied to the vector $\bar{\alpha}^{s} \phi_{0}$, belonging to the $U(3)$ irrep ($1,0,0$), it produces a superposition of vectors in $(2,0,0)$ and $(1,1,0)$. Associated with this is the fact that one cannot find simple functions M and N of the boson operators $\bar{\alpha}^{r}, \alpha_{r}, \bar{\beta}^{r}$ and β_{r} which have the eigenvalues m and n on the irrep labelled ($m, n, 0$). Similar remarks apply to the operators $\bar{\alpha}^{r}, \alpha_{r}, \bar{\beta}_{r}$ and β^{r} of Arisaka's approach.

This suggests a possible way of avoiding the difficulty: replace the usual boson operators by creation and annihilation operators which are Wigner operators. In the spirit of Lohe and Hurst (1971), who defined 'modified' boson operators that are Wigner operators for the orthogonal and symplectic groups, and who used them, in effect, to formulate models for those groups, one may attempt to 'modify' in an appropriate way the boson operators of either the approach of Baird and Biedenharn or that of Arisaka. A general technique does exist for systematically resolving tensor operators of any classical group into Wigner operators (Bracken and Green 1971, Green 1971, Green and Bracken 1974, Gould 1980), and could be used here. However, one might expect that the Wigner operators obtained by this or some other method from the given boson operators would not be simply polynomials in those boson
operators. (For instance, they are not polynomials in the cases treated by Lohe and Hurst.) Then their introduction might not provide an attractive resolution of the difficulties described above, because the computational simplicity associated with the boson calculus might be lost.

Fortunately it turns out that this is not the case for certain Wigner creation and annihilation operators for $\mathrm{SU}(3)$ which can be obtained very simply by modifying the boson operators of Arisaka's approach. These Wigner operators do have simple (cubic) expressions in terms of the boson operators, and they do satisfy simple algebraic relations. Furthermore, they have the fundamental property that all vectors (and only such vectors) obtainable from a vacuum vector by the application of these operators lie in a vector space which carries every different irrep of $\mathrm{SU}(3)$ exactly once. Their introduction therefore leads directly to a model for $\mathrm{SU}(3)$.
(After the preparation of the first version of this work, the authors' attention was drawn to preprints by Flath (1984), Flath and Biedenharn (1982), Biedenharn and Flath (1984a, b) in which some closely related results are obtained, but from a different direction. They arrive at the same realisation of the $\operatorname{SO}(6,2)$ algebra described in $\S 3$ below, but their emphasis is on the algebra of $\mathrm{SU}(3)$ tensor operators and a resolution of the multiplicity problem for such operators, rather than the construction of creation and annihilation operators which lead to a model of SU(3). Sparling (1981) identified the relevant irrep of the $\operatorname{SO}(6,2)$ algebra even earlier, and described some properties of its $\operatorname{SU}(3)$ content, within the context of a model of elementary particles. The authors are indebted to a referee for bringing this last reference to their attention.)

2. Wigner creation and annihilation operators

In the framework considered by Arisaka, the structure of the $U(3)$ generators \boldsymbol{A}_{s}^{r} as in (10) reflects a certain structure for that group's representation in the six-boson space \mathscr{F}_{6} : the $\bar{\alpha}^{r} \alpha_{s}$ are associated with a direct sum of irreps

$$
\begin{equation*}
\sum_{p=0}^{\infty} \oplus(p, 0,0) \tag{16}
\end{equation*}
$$

where p is the non-negative integral eigenvalue of the number operator

$$
\begin{equation*}
P=\bar{\alpha}^{r} \alpha_{r} ; \tag{17}
\end{equation*}
$$

and similarly the $-\bar{\beta}_{s} \beta^{r}$ are associated with a direct sum

$$
\begin{equation*}
\sum_{q=0}^{\infty} \oplus(0,0,-q), \tag{18}
\end{equation*}
$$

where q is the eigenvalue of

$$
\begin{equation*}
Q=\bar{\beta}_{r} \beta^{r} . \tag{19}
\end{equation*}
$$

The A_{s}^{r} therefore generate a direct sum of representations, each of the form $(p, 0,0) \otimes$ ($0,0,-q$), which reduces as (Pais 1966)

$$
\begin{equation*}
(p, 0,0) \otimes(0,0,-q)=\sum_{k=0}^{m} \oplus(p-k, 0, k-q) \tag{20}
\end{equation*}
$$

where m is the smaller of p and q. In full then, the A_{s}^{r} generate in \mathscr{F}_{6} the representation

$$
\begin{equation*}
\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \sum_{k=0}^{m} \oplus(p-k, 0, k-q) . \tag{21}
\end{equation*}
$$

Consider the Casimir operator for $U(3)$,

$$
\begin{equation*}
\frac{1}{2} A_{s}^{r} A_{r}^{s}=\frac{1}{2}\left(\bar{\alpha}^{r} \alpha_{s}-\bar{\beta}_{s} \beta^{r}\right)\left(\bar{\alpha}^{s} \alpha_{r}-\bar{\beta}_{r} \beta^{s}\right) \tag{22}
\end{equation*}
$$

With the help of the boson commutation relations, it is easily checked that

$$
\begin{equation*}
\frac{1}{2} A_{s}^{r} A_{r}^{s}=\frac{1}{2} P(P+2)+\frac{1}{2} Q(Q+2)-X \tag{23}
\end{equation*}
$$

where X is the Hermitian operator

$$
\begin{equation*}
X=\left(\bar{\alpha}^{r} \bar{\beta}_{r}\right)\left(\alpha_{s} \beta^{s}\right) . \tag{24}
\end{equation*}
$$

It is known (Okubo 1962) that on an irrep of $\mathrm{U}(3)$ labelled (λ, μ, ν) by highest weights, the Casimir operator takes the value

$$
\begin{equation*}
\frac{1}{2}\left(\lambda^{2}+2 \lambda+\mu^{2}+\nu^{2}-2 \nu\right) \tag{25}
\end{equation*}
$$

Therefore, on an irrep ($p-k, 0, k-q$) in the sum (21) one has

$$
\begin{equation*}
\frac{1}{2} A_{s}^{r} A_{r}^{s}=\frac{1}{2} p(p+2)+\frac{1}{2} q(q+2)-k(p+q+2-k), \tag{26}
\end{equation*}
$$

and so

$$
\begin{equation*}
X=k(p+q+2-k) . \tag{27}
\end{equation*}
$$

It follows that, by restricting the representation space to the subspace $\mathscr{B} \subset \mathscr{F}_{6}$ on which $X=0$ (corresponding to $k=0$ in (27) and (21)), one restricts the representation of $\mathrm{U}(3)$ from that in (21) to

$$
\begin{equation*}
\sum_{p=0}^{\infty} \sum_{q=0}^{\infty}(p, 0,-q) . \tag{28}
\end{equation*}
$$

The operator X is the simplest of the 'trace' operators introduced by Arisaka and used by him to construct projectors onto $\mathrm{U}(3)$ irreps in the sum (21). Note that X has the form $\theta^{\dagger} \theta$, with $\theta=\alpha_{r} \beta^{r}$ and θ^{\dagger} its Hermitian conjugate. The condition that $X=0$ on \mathscr{B} is therefore equivalent to the simpler condition

$$
\begin{equation*}
\alpha_{r} \beta^{r} \phi=0 \tag{29}
\end{equation*}
$$

for every vector ϕ in \mathscr{B}.
Note that the typical representation ($p, 0,-q$) in the sum (28) is labelled by the eigenvalues p and q of P and Q, because it is associated unambiguously with the tensor product $(p, 0,0) \otimes(0,0,-q)$. The number operators P and Q evidently form a complete set of independent $\mathrm{U}(3)$ scalars on \mathscr{B} (though not on the larger space \mathscr{F}_{6}), and any other $U(3)$ scalar is therefore, on \mathscr{B}, a function of them. In particular

$$
\begin{align*}
& A_{r}^{r}=P-Q, \quad A_{s}^{r} A_{r}^{s}=P(P+2)+Q(Q+2), \\
& A_{s}^{r} A_{t}^{s} A_{r}^{t}=P^{3}-Q^{3}+4 P^{2}+4 P-2 Q^{2}+2 Q+P Q . \tag{30}
\end{align*}
$$

These results may be verified explicitly, using the boson relations and the fact that (29) holds on \mathscr{B}, or they may be deduced from the known values (Okubo 1962) of these $\mathrm{U}(3)$ invariants on an irrep labelled ($p, 0,-q$).

Such an irrep remains irreducible when restricted to $\mathrm{SU}(3)$, and corresponds to the two-rowed Young diagram with row lengths $p+q$ and q : it will be labelled ($p+q, q$) in what follows. Then it is a consequence of (28) that the subrepresentation of $\operatorname{SU}(3)$ generated in \mathscr{B} by the operators T_{s}^{r} as in (9),

$$
\begin{equation*}
T_{s}^{r}=A_{s}^{r}-\frac{1}{3} \delta_{s}^{r} A_{t}^{\prime} \tag{31}
\end{equation*}
$$

has the form

$$
\begin{equation*}
\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \oplus(p+q, q) \tag{32}
\end{equation*}
$$

This sum can be seen to contain every different irrep of $\operatorname{SU(3)}$ exactly once.
Each term in this sum is associated in one-to-one fashion with a pair of eigenvalues p, q of P and Q. The independent $\mathrm{SU}(3)$ invariants on \mathscr{B} take the form, from (30) and (31),

$$
\begin{align*}
& T_{s}^{r} T_{r}^{s}=\frac{2}{3}\left(P^{2}+Q^{2}+P Q+3 P+3 Q\right) \tag{33}\\
& T_{s}^{r} T_{t}^{s} T_{r}^{t}=\frac{1}{9}\left(2 P^{3}-2 Q^{3}+3 P^{2} Q-3 P Q^{2}+18 P^{2}+9 P Q+36 P+18 Q\right)
\end{align*}
$$

It is clear that any Wigner operator for $\mathrm{SU}(3)$ (or $\mathrm{U}(3)$) on \mathscr{B} must be a shift operator for P and Q, since it has to take a vector from one irrep to another, and hence one eigenvector of P and Q into another. Therefore it is of interest to construct, from the given boson operators, modified operators which shift the number operators P and Q while respecting the condition (29) which defines \mathscr{B}.

Consider the creation operator $\bar{\alpha}^{r}$, which raises the value of P by one unit and commutes with Q. Applied to a vector belonging to $(p, 0,-q)$ within $(p, 0,0) \otimes$ $(0,0,-q)$, it must produce a vector contained in $(p+1,0,0) \otimes(0,0,-q)$, that is to say, in the sum

$$
\begin{equation*}
\sum_{k=0}^{m^{\prime}}(p+1-k, 0, k-q) \tag{34}
\end{equation*}
$$

where m^{\prime} is the smaller of $p+1$ and q. On the other hand, since $\bar{\alpha}^{r}$ transforms according to the irrep $(1,0,0)$, it must carry a vector belonging to $(p, 0,-q)$ into a vector belonging to $(p, 0,-q) \otimes(1,0,0)$, which reduces as (Pais 1966)

$$
\begin{equation*}
(p, 0,-q) \otimes(1,0,0)=(p+1,0,-q) \oplus(p, 1,-q) \oplus(p, 0,1-q) \tag{35}
\end{equation*}
$$

A comparison of (34) and (35) shows that in general $\bar{\alpha}^{r}$ carries a vector from ($p, 0,-q$) within \mathscr{B} into $(p+1,0,-q) \oplus(p, 0,1-q)$. But the resultant vector is an eigenvector of P and Q with eigenvalues $p+1$ and q, and the only vectors in \mathscr{B} corresponding to such eigenvalues lie in $(p+1,0,-q)$. Therefore $\bar{\alpha}^{r}$ is a sum of two operators. One, say $\bar{\alpha}^{(1) r}$, shifts $(p, 0,-q)$ in \mathscr{B} into $(p+1,0,-q)$ in \mathscr{B}; the other, say $\bar{\alpha}^{(2) r}$, shifts $(p, 0,-q)$ in \mathscr{B} into ($p, 0,1-q$) outside \mathscr{B}. Now formulae (23) and (25) show not only that $X=0$ on \mathscr{B} but also that $X=p+q+2$ on $(p+1,0,1-q)$ within $(p+1,0,0) \otimes$ $(0,0,-q)$. It then follows that, on vectors in \mathscr{B},

$$
\begin{equation*}
X \bar{\alpha}^{(1) r}=\bar{\alpha}^{(1) r} X, \quad(X-P-Q-1) \bar{\alpha}^{(2) r}=\bar{\alpha}^{(2) r} X \tag{36}
\end{equation*}
$$

Since

$$
\begin{equation*}
\bar{\alpha}^{r}=\bar{\alpha}^{(1) r}+\bar{\alpha}^{(2) r} \tag{3.7}
\end{equation*}
$$

it follows from (36) that, on \mathscr{B},

$$
\begin{equation*}
(P+Q+1) \bar{\alpha}^{r}+\left[\bar{\alpha}^{\prime}, X\right]=(P+Q+1) \bar{\alpha}^{(1) r} . \tag{38}
\end{equation*}
$$

This operator $(P+Q+1) \bar{\alpha}^{(1) r}$ has the desired shifting properties, prompting the definition of the modified creation operator

$$
\begin{equation*}
\bar{A}^{r}=(P+Q+1) \bar{\alpha}^{r}+\left[\bar{\alpha}^{r}, X\right]=(P+Q+1) \bar{\alpha}^{r}-\left(\bar{\alpha}^{s} \bar{\beta}_{s}\right) \beta^{r} . \tag{39}
\end{equation*}
$$

Then \bar{A}^{r} is a Wigner operator on \mathscr{B}, carrying ($p, 0,-q$) into ($p+1,0,-q$) while raising the eigenvalue of P by one unit and commuting with Q. Similarly, define

$$
\begin{equation*}
\bar{B}_{r}=(P+Q+1) \bar{\beta}_{r}-\left(\bar{\alpha}^{s} \bar{\beta}_{s}\right) \alpha_{r} \tag{40}
\end{equation*}
$$

It also is a Wigner operator on \mathscr{B}, carrying ($p, 0,-q$) into ($p, 0,-q-1$) while raising the eigenvalue of Q by one unit and commuting with P. It can now be checked directly that \bar{A}^{r} and \bar{B}_{r} leave the condition (29), and hence the subspace \mathscr{B}, invariant: for example the commutator of \bar{A}^{r} with $\alpha_{s} \beta^{s}$ equals $-2 \bar{\alpha}^{r}\left(\alpha_{s} \beta^{s}\right)$ and hence vanishes on \mathscr{B}.

The annihilation operators α_{r} and β_{r} leave invariant the condition (29) and hence the subspace \mathscr{B}, and they require no modification. Since they are shift operators for P and Q they are also Wigner operators on \mathscr{B}. In fact, within \mathscr{B}, α_{r} carries $(p, 0,-q)$ into ($p-1,0,-q$) while β^{r} carries it into ($p, 0,1-q$).

Accordingly, take as conjugate to \bar{A}^{r} and \bar{B}_{r} above,

$$
\begin{equation*}
A_{r}=\alpha_{r} \quad B^{r}=\beta^{r} \tag{41}
\end{equation*}
$$

Then A_{r} is not Hermitian conjugate to \bar{A}^{r}. In fact

$$
\begin{equation*}
\bar{A}^{r \dagger}=\alpha_{r}(P+Q+1)-\bar{\beta}_{r}\left(\alpha_{s} \beta^{s}\right) \tag{42}
\end{equation*}
$$

which reduces to $\alpha_{r}(P+Q+1)\left(=(P+Q+2) \alpha_{r}\right)$ on \mathscr{B} because of (29). On \mathscr{B} then,

$$
\begin{equation*}
\bar{A}^{r t}=(P+Q+2) A_{r} \tag{43}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\bar{B}_{r}^{+}=(P+Q+2) B^{r} \tag{44}
\end{equation*}
$$

However these operators are related by a similarity transformation on \mathscr{B} to operators $\bar{A}^{\prime \prime}, \bar{B}_{r}^{\prime}$ and their Hermitian conjugates $A_{r}^{\prime}, B^{\prime \prime}$. To see this, consider the Hermitian operator S which, when applied to any eigenvector of P and Q with eigenvalues p and q, takes the value $[(p+q+1)!]^{1 / 2}$. Symbolically

$$
\begin{equation*}
S(P, Q)=[(P+Q+1)!]^{1 / 2} \tag{45}
\end{equation*}
$$

This operator has a well defined inverse, which may be written as

$$
\begin{equation*}
S(P, Q)^{-1}=[(P+Q+1)!]^{-1 / 2} \tag{46}
\end{equation*}
$$

Define
$\bar{A}^{r}=S(P, Q)^{-1} \bar{A}^{r} S(P, Q)=\bar{A}^{r} S(P+1, Q)^{-1} S(P, Q)=\bar{A}^{r}(P+Q+2)^{-1 / 2}$
and similarly

$$
\begin{align*}
& \bar{B}_{r}^{\prime}=S(P, Q)^{-1} \bar{B}_{r} S(P, Q)=\bar{B}_{r}(P+Q+2)^{-1 / 2} \\
& A_{r}^{\prime}=S(P, Q)^{-1} A_{r} S(P, Q)=(P+Q+2)^{1 / 2} A_{r} \tag{48}\\
& B^{r \prime}=S(P, Q)^{-1} B^{r} S(P, Q)=(P+Q+2)^{1 / 2} B^{r}
\end{align*}
$$

It then follows from (43) that, on \mathscr{B},

$$
\begin{equation*}
\bar{A}^{r, \dagger}=(P+Q+2)^{-1 / 2} \bar{A}^{r \dagger}=(P+Q+2)^{1 / 2} A_{r}=A_{r}^{\prime} \tag{49}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\bar{B}_{r}^{\prime+}=B^{r} . \tag{50}
\end{equation*}
$$

The primed operators satisfy the same commutation relations as the unprimed ones, and they are also Wigner operators for $\mathrm{U}(3)$ on \mathscr{B}, with similar shifting properties for P and Q. However, the unprimed operators are preferred in what follows because of their simpler expressions and consequent easier manipulation: the unprimed, and not the primed operators, are simply polynomials in the boson operators. Their unusual conjugacy properties cause no difficulties, as will be seen.

3. A realisation of $\operatorname{SO}(6,2)$

The modified creation and annihilation operators introduced in (39), (40) and (41) generate under commutation a representation of the Lie algebra of the simple Lie group $\operatorname{SO}(6,2)$. To see this, introduce the number operators P and Q, and the $U(3)$ generators A_{s}^{r} as in (17), (19) and (10), and let

$$
\begin{align*}
& T_{r s}=\alpha_{r} \bar{\beta}_{s}-\alpha_{s} \bar{\beta}_{r}=-T_{s n} \quad T^{r s}=\beta^{r} \bar{\alpha}^{s}-\beta^{s} \bar{\alpha}^{r}=-T^{s r}, \\
& M=P+Q+2 . \tag{51}
\end{align*}
$$

Note that $T^{r s}$ is Hermitian conjugate to $T_{s r}$ It is straightforward to verify the following commutation relations:

$$
\begin{align*}
& {\left[\bar{A}^{r}, \bar{A}^{s}\right]=\left[\bar{A}^{r}, \bar{B}_{s}\right]=\left[\bar{B}_{n}, \bar{B}_{s}\right]=0, \quad\left[A_{r}, A_{s}\right]=\left[A_{r} B^{s}\right]=\left[B^{r}, B^{s}\right]=0,} \\
& {\left[A_{r} \bar{A}^{s}\right]=\delta_{r}^{s} M+A_{r}^{s}, \quad\left[B^{s}, \bar{B}_{r}\right]=\delta_{r}^{s} M-A_{r}^{s},} \\
& {\left[\bar{A}^{r}, B^{s}\right]=T^{r s}, \quad\left[A_{r} \bar{B}_{s}\right]=T_{r s},} \\
& {\left[\bar{A}^{r}, A_{t}^{s}\right]=-\delta_{t}^{r} \bar{A}^{s}, \quad\left[\bar{B}_{r}, A_{t}^{s}\right]=\delta_{r}^{s} \bar{B}_{t},} \\
& {\left[A_{n} A_{t}^{s}\right]=\delta_{r}^{s} A_{t}, \quad\left[B^{r}, A_{t}^{s}\right]=-\delta_{t}^{r} B^{s},} \\
& {\left[\bar{A}^{r}, T_{s t}\right]=\delta_{t}^{r} \bar{B}_{s}-\delta_{s}^{r} \bar{B}_{t}, \quad\left[A_{n} T_{s t}\right]=0,} \\
& {\left[\bar{B}_{n}, T_{s t}\right]=0, \quad\left[B^{r}, T_{s t}\right]=\delta_{t}^{r} A_{s}-\delta_{s}^{r} A_{t},} \\
& {\left[\bar{A}^{r}, T^{s t}\right]=0, \quad\left[A_{r}, T^{s t}\right]=\delta_{r}^{t} B^{s}-\delta_{r}^{s} B^{t},} \tag{52}\\
& {\left[\bar{B}_{r} T^{s t}\right]=\delta_{r}^{t} \bar{A}^{s}-\delta_{r}^{s} \bar{A}^{t}, \quad\left[B^{r}, T^{s t}\right]=0,} \\
& {\left[\bar{A}^{r}, M\right]=-\bar{A}^{r}, \quad\left[A_{n} M\right]=A_{n}} \\
& {\left[\bar{B}_{n} M\right]=-\bar{B}_{n} \quad\left[B^{r}, M\right]=B^{r},} \\
& {\left[A_{s}^{r}, A_{u}^{r}\right]=\delta_{s}^{t} A_{u}^{r}-\delta_{u}^{r} A_{s}^{t}, \quad\left[A_{s}^{r}, T_{u u}\right]=-\delta_{t}^{r} T_{s u}-\delta_{u}^{r} T_{t s},} \\
& {\left[A_{s}^{r}, T^{t u}\right]=\delta_{s}^{t} T^{r u}+\delta_{s}^{u} T^{t r}, \quad\left[A_{s}^{r}, M\right]=0,} \\
& {\left[T_{r s}, T_{t u}\right]=0=\left[T^{r s}, T^{t u}\right], \quad\left[T_{r s}, T^{t u}\right]=\delta_{r}^{t} A_{s}^{u}+\delta_{s}^{u} A_{r}^{t}-\delta_{s}^{t} A_{r}^{u}-\delta_{r}^{u} A_{s}^{t},} \\
& {\left[T_{r s}, M\right]=0=\left[T^{r s}, M\right] \text {. }}
\end{align*}
$$

Of the operators $\bar{A}^{r}, A_{n} \bar{B}_{n} B^{r}, A_{s}^{r}, T_{r s}, T^{r s}$ and $M, 28$ are linearly independent. Now define an equivalent set of operators $J_{A B}\left(=-J_{B A}\right)$ for $A, B=1,2, \ldots, 8$, by setting
$J_{2 r-1,2 s-1}=-\frac{1}{2} \mathrm{i}\left(T_{r s}+A_{s}^{r}-A_{r}^{s}+T^{r s}\right), \quad J_{2 r-1,2 s}=-\frac{1}{2}\left(T_{r s}+A_{s}^{r}+A_{r}^{s}-T^{r s}\right)$,
$J_{2 r, 2 s}=\frac{1}{2} \mathrm{i}\left(T_{r s}-A_{s}^{r}+A_{r}^{s}+T^{r s}\right)$,
$J_{7,2 r-1}=-\frac{1}{2}\left(A_{r}+\bar{A}^{r}-\bar{B}_{r}-B^{r}\right), \quad J_{7,2 r}=\frac{1}{2} \mathrm{i}\left(A_{r}-\bar{A}^{r}-\bar{B}_{r}+B^{r}\right)$,
$J_{8,2 r-1}=\frac{1}{2} \mathrm{i}\left(A_{r}-\bar{A}^{r}+\bar{B}_{r}-B^{r}\right), \quad J_{8,2 r}=\frac{1}{2}\left(A_{r}+\bar{A}^{r}+\bar{B}_{r}+B^{r}\right), \quad J_{78}=M$,
for $r, s=1,2,3$. Then the commutation relations (52) assume the familiar form for $\mathrm{SO}(6,2)$,

$$
\begin{equation*}
\left[J_{A B}, J_{C D}\right]=\mathrm{i}\left(g_{A C} J_{B D}+g_{B D} J_{A C}-g_{B C} J_{A D}-g_{A D} J_{B C}\right) \tag{54}
\end{equation*}
$$

where the metric tensor $g_{A B}=\operatorname{diag}(1,1,1,1,1,1,-1,-1)$.
Note the compact $\mathrm{SO}(6)$ subgroup associated with the Hermitian operators $J_{a b}$, $a, b=1,2, \ldots, 6$, or equivalently, with the Hermitian linear combinations of the $T_{r s}$, $T^{r s}$ and A_{s}^{r}; and the maximal compact $\mathrm{SO}(6) \otimes \mathrm{SO}(2)$ subgroup associated with this set of operators enlarged by the addition of $J_{78}(=M)$. Note also the $\mathrm{U}(3)<\mathrm{SO}(6)$ subgroup associated as before with the operators A_{s}^{\prime} of (10), and the subgroup $\mathrm{SU}(3)<\mathrm{U}(3)<\mathrm{SO}(6)<\mathrm{SO}(6,2)$, associated as before with the T_{s}^{r} of (9).

The relations inverse to (53) are given by
$\bar{A}^{r}=-\frac{1}{2}\left(J_{7,2 r-1}-\mathrm{i} J_{7,2 r}-\mathrm{i} J_{8,2 r-1}-J_{8,2 r}\right)$,
$A_{r}=-\frac{1}{2}\left(J_{7,2 r-1}+\mathrm{i} J_{7,2 r}+\mathrm{i} J_{8,2 r-1}-J_{8,2 r}\right)$,
$\bar{B}_{r}=\frac{1}{2}\left(J_{7,2 r-1}+\mathrm{i} J_{7,2 r}-\mathrm{i} J_{8,2 r-1}+J_{8,2 r}\right), \quad B^{r}=\frac{1}{2}\left(J_{7,2 r-1}-\mathrm{i} J_{7,2 r}+\mathrm{i} J_{8,2 r-1}+J_{8,2 r}\right)$,
$A_{s}^{r}=\frac{1}{2}\left(\mathrm{i} J_{2 r-1,2 s-1}-J_{2 r-1,2 s}+J_{2 r, 2 s-1}+\mathrm{i} J_{2 r, 2 s}\right)$,
$T_{r s}=\frac{1}{2}\left(\mathrm{i} J_{2 r-1,2 s-1}-J_{2 r-1,2 s}-J_{2 r, 2 s-1}-\mathrm{i} J_{2 r, 2 s}\right)$,
$T^{r s}=\frac{1}{2}\left(\mathrm{i} J_{2 r-1,2 s-1}+J_{2 r-1,2 s}+J_{2 r, 2 s-1}-\mathrm{i} J_{2 r, 2 s}\right), \quad M=J_{78}$,
for $r, s=1,2,3$.
The operators $J_{A B}$ define a representation of the Lie algebra of $\operatorname{SO}(6,2)$ in the whole of the six-boson Fock space \mathscr{F}_{6} generated from ϕ_{0} by the action of the $\bar{\alpha}^{r}$ and $\bar{\beta}_{r}$ Consider instead the subspace $\mathscr{B}^{\prime} \subset \mathscr{F}_{6}$ which is generated from ϕ_{0} by the application of arbitrary finite polynomials in the modified operators, $\bar{A}^{r}, A_{n} \bar{B}_{n} B^{r}$. This subspace is invariant under the action of the $\operatorname{SO}(6,2)$ operators $J_{A B}$, and so carries itself a subrepresentation of the $\mathrm{SO}(6,2)$ Lie algebra. In order to see this, it suffices to note that the $\bar{A}^{r}, A_{n}, \bar{B}_{r}$ and B^{r} leave \mathscr{B}^{\prime} invariant as a result of its definition, and also that they generate the whole of the $\operatorname{SO}(6,2)$ algebra under commutation, as the relations (52) show.

The condition (29) holds for every vector ϕ in \mathscr{B}^{\prime}. This follows because ϕ_{0} satisfies the condition, and the modified creation and annihilation operators which generate \mathscr{B}^{\prime} from ϕ_{0} leave the condition invariant, as was shown in $\S 2$. It follows that \mathscr{B}^{\prime} is a subspace of the space \mathscr{B} introduced there, but in fact the two spaces carry the same representation of $\mathrm{U}(3)$ and so are one and the same, as will be shown in $\S 4$.

Since the A_{r}, B^{r} are not Hermitian conjugate to \bar{A}^{r}, \bar{B}_{n} the representation of the $\operatorname{SO}(6,2)$ algebra defined by (53) is not Hermitian: the operators $J_{7 a}$ and $J_{8 a}, a=$ $1,2, \ldots, 6$ are not Hermitian. (Note that the representation of the $\mathrm{SO}(6) \otimes \mathrm{SO}(2)$ subalgebra is Hermitian because $T_{r s}$ and $T^{s r}$ are Hermitian conjugate, as are A_{s}^{r} and
 one because the algebra is generated by (A_{r}, \bar{A}^{r}) and (B^{r}, \bar{B}_{r}), and these are similar on \mathscr{B}^{\prime} to Hermitian conjugate pairs ($\left.A_{r}^{\prime}, \bar{A}^{\prime \prime}\right),\left(B^{r \prime}, \bar{B}_{r}^{\prime}\right)$, as shown previously. (It does not follow that the representation on the larger space \mathscr{F}_{6} is equivalent to an Hermitian representation.)

How can the representation of the $\mathrm{SO}(6,2)$ algebra on \mathscr{B}^{\prime} be characterised? It is not hard to see, as will be noted in \& 4, that it is irreducible. Furthermore it is reasonably straightforward to check that the Casimir operator

$$
\begin{equation*}
\frac{1}{2} g^{A C} g^{B D} J_{A B} J_{C D}, \tag{56}
\end{equation*}
$$

where $g^{A B}=g_{A B}$, has the value -8 on \mathscr{B}^{\prime}. This is not, of course, enough to identify the representation, but the other three independent invariants (one is a polynomial of degree six in the $J_{A B}$) have not been evaluated.

If the free indices in (53) are restricted to run over 1,2 rather than $1,2,3$, the subscripts 7 and 8 in (53) are replaced by 5 and 6 , the factor $(P+Q+1)$ in (39) and (40) is replaced by $(P+Q)$, and ($P+Q+2$) in (51) is replaced by $(P+Q+1)$, then one obtains a representation of the Lie algebra of $\operatorname{SO}(4,2)$, which may then be restricted to the subspace of \mathscr{F}_{4} on which $\alpha_{r} \beta^{r}=0$. This sub-representation is analogous to the representation of the $\operatorname{SO}(6,2)$ algebra on \mathscr{B}^{\prime}, and is identifiable as equivalent to one of the well known 'ladder' representations of the $\operatorname{SO}(4,2)$ algebra. (It corresponds to $\lambda=0$ in the notation of Mack and Todorov (1969), and belongs to the \mathscr{L} or \mathscr{L}^{*} series, depending on whether the $J_{A B}$ are defined just as in (53), or have J_{56} and $J_{6 a}, a=1,2,3,4$, replaced therein by their negatives.) This follows because the operators $J_{A B}(A, B=$ $1,2, \ldots, 6)$ in that $\mathrm{SO}(4,2)$ subrepresentation can be shown to satisfy the relations

$$
\begin{equation*}
J_{A C} J_{B}^{C}+J_{B C} J_{A}^{C}=-\frac{1}{3} g_{A B} J_{C D} J^{C D}, \quad \frac{1}{2} J_{A B} J^{A B}=-3 \tag{57}
\end{equation*}
$$

where $J^{C}{ }_{B}=g^{C D} J_{D B}$ etc, and $g^{A B}=g_{A B}=\operatorname{diag}(1,1,1,1,-1,-1)$. Such relations are known to characterise these ladder representations of $\operatorname{SO}(4,2)$ (Barut and Böhm 1970).

Note that what is involved here is not the standard realisation of a ladder representation on \mathscr{F}_{4}. Some of the $J_{A B}$ are cubic in the boson operators, whereas they are all quadratic in the standard realisation.

These results in the $\mathrm{SO}(4,2)$ case suggest that in the $\mathrm{SO}(6,2)$ case, it may be possible to find another realisation, with each $J_{A B}$ a quadratic expression in boson operators. (However, the number of boson pairs needed may exceed six.) The modified creation and annihilation operators would then have a quadratic realisation in terms of boson operators. This interesting possibility is being explored (Bracken 1984).

In concluding this section, note that the definitions (39), (40) and (41) imply

$$
\begin{equation*}
\bar{A}^{r} \bar{B}_{r}=\bar{B}_{r} \bar{A}^{r}=\left(\bar{\alpha}^{s} \bar{\beta}_{s}\right)^{2}\left(\alpha_{r} \beta^{r}\right), \quad A_{r} B^{r}=B^{r} A_{r}=\alpha_{r} \beta^{r} \tag{58}
\end{equation*}
$$

Therefore the following relations hold on \mathscr{B}^{\prime} :

$$
\begin{equation*}
\bar{A}^{r} \bar{B}_{r}=\bar{B}_{r} \bar{A}^{r}=A_{r} B^{r}=B^{r} A_{r}=0 . \tag{59}
\end{equation*}
$$

The first two of these will play a key role in $\S 4$.
It also follows from the definitions given that

$$
\begin{align*}
& \bar{A}^{r} A_{r}-P(P+Q+1)=A_{r} \bar{A}^{r}-(P+2)(P+Q+3)=-\left(\bar{\alpha}^{s} \bar{\beta}_{s}\right)\left(\alpha_{r} \beta^{r}\right), \tag{60}\\
& \bar{B}_{r} B^{r}-Q(P+Q+1)=B^{r} \bar{B}_{r}-(Q+2)(P+Q+3)=-\left(\bar{\alpha}^{s} \bar{\beta}_{s}\right)\left(\alpha_{r} \beta^{r}\right),
\end{align*}
$$

so that

$$
\begin{equation*}
P=\frac{1}{3}\left[A_{n} \bar{A}^{r}\right]-\frac{1}{6}\left[B^{r}, \bar{B}_{r}\right]-1, \quad Q=\frac{1}{3}\left[B^{r}, \bar{B}_{r}\right]-\frac{1}{6}\left[A_{n}, \bar{A}^{r}\right]-1, \tag{61}
\end{equation*}
$$

and hence $(P+1)$ and $(Q+1)$, but not the number operators P and Q themselves, are contained in the $\operatorname{SO}(6,2)$ Lie algebra. Equations (60) also show that, on \mathscr{B}^{\prime},

$$
\begin{array}{ll}
\bar{A}^{r} A_{r}=P(P+Q+1), & \bar{B}_{r} B^{r}=Q(P+Q+1), \tag{62}\\
A_{r} \bar{A}^{r}=(P+2)(P+Q+3), & B^{r} \bar{B}_{r}=(Q+2)(P+Q+3) .
\end{array}
$$

4. Irreducible tensor representations of $\operatorname{SU(3)}$

For fixed integers $p \geqslant 0$ and $q \geqslant 0$, consider all vectors of the form

$$
\begin{equation*}
\phi_{k l \ldots m}^{r s . t}=\bar{A}^{r} \bar{A}^{s} \ldots \bar{A}^{t} \bar{B}_{k} \bar{B}_{l} \ldots \bar{B}_{m} \phi_{0} \tag{63}
\end{equation*}
$$

in which p of the \bar{A}-operators and q of the \bar{B} operators appear, and the indices run over 1 to 3 independently. Each such vector evidently lies in \mathscr{B}^{\prime} and is an eigenvector of P and Q with eigenvalues p and q. Note from the relations (52) that the order of the \bar{A} - and \bar{B}-operators here is immaterial. From the commutation relations (52) and the fact that $A_{s}^{r} \phi_{0}=0$, it follows that

$$
\begin{align*}
A_{n}^{u} \phi_{k l \ldots m}^{r s . \ldots t}= & \delta_{n}^{r} \phi_{k l \ldots m}^{u s . . t}+\delta_{n}^{s} \phi_{k l \ldots m}^{r u . t}+\ldots+\delta_{n}^{t} \phi_{k l \ldots m}^{r s} \\
& -\delta_{k}^{u} \phi_{n l \ldots m}^{r s .1}-\delta_{l}^{u} \phi_{k n \ldots m}^{r s \ldots t}-\ldots-\delta_{m}^{u} \phi_{k l \ldots n}^{s c \ldots l}, \tag{64}
\end{align*}
$$

so that $\phi_{k l . . m}^{r s . . t}$ transforms in a manifestly covariant way, as a $\mathrm{U}(3)$ tensor. This tensor is irreducible, corresponding to the representation $(p, 0,-q)$ of $U(3)$. In order to see this, note from the relations (52) that ϕ is separately symmetric in its upper and lower indices, and from the relations (59) that

$$
\begin{equation*}
\phi_{r \ldots m}^{r s . \ldots t}=\left(\bar{A}^{\prime} \bar{B}_{r}\right) \bar{A}^{s} \ldots \bar{A}^{t} \bar{B}_{l} \ldots \bar{B}_{m} \phi_{0}=0 . \tag{65}
\end{equation*}
$$

It is known that a tensor satisfying these two conditions is $\mathrm{U}(3)$ and $\mathrm{SU}(3)$ irreducible, corresponding to the irrep $(p+q, q)$ of $\operatorname{SU}(3)$, and hence to an irrep of $\mathrm{U}(3)$ labelled ($p+r, r, r-q$) for some r (Pais 1966). Since it follows from (64) that

$$
\begin{equation*}
A_{n}^{n} \phi_{k l \ldots m}^{r s . . .}=(p-q) \phi_{k l \ldots m}^{r s \ldots t}, \tag{66}
\end{equation*}
$$

and since it is known (Okubo 1962) that, on ($p+r, r, r-q$),

$$
\begin{equation*}
A_{n}^{n}=(p-q+3 r) \tag{67}
\end{equation*}
$$

it follows that $r=0$ and that $\phi_{k l \ldots m}^{r s . . t}$ corresponds to the $\mathrm{U}(3) \operatorname{irrep}(p, 0,-q)$. It can be seen now that every different irrep of $\operatorname{SU}(3)$ occurs just once as p and q in (63) run over the non-negative integers independently.

Every vector in \mathscr{B}^{\prime} can be written as a finite linear combination of vectors of the form (63). This follows from the definition of \mathscr{B}^{\prime}, the commutation relations (52), and the fact that, as is easily checked from (8) and the definitions above,

$$
\begin{equation*}
(M-2) \phi_{0}=A_{r} \phi_{0}=B^{r} \phi_{0}=0, \quad T_{r s} \phi_{0}=T^{r s} \phi_{0}=A_{s}^{r} \phi_{0}=0 \tag{68}
\end{equation*}
$$

For example, consider the vector $A_{r} \bar{B}_{s} \bar{A}^{t} \phi_{0}$:

$$
\begin{align*}
A_{r} \widetilde{B}_{s} \bar{A}^{t} \phi_{0} & =\bar{B}_{s} A \bar{A}^{t} \phi_{0}+T_{r s} \bar{A}^{t} \phi_{0} \\
& =\bar{B}_{s} \bar{A}^{t} A_{r} \phi_{0}+\bar{B}_{s}\left(\delta_{r}^{t} M+A_{r}^{t}\right) \phi_{0}+\bar{A}^{\prime} T_{r s} \phi_{0}+\left(\delta_{r}^{t} \bar{B}_{s}-\delta_{s}^{\prime} \bar{B}_{r}\right) \phi_{0} \\
& =3 \delta_{r}^{i} \bar{B}_{r} \phi_{0}-\delta_{s}^{t} \bar{B}_{r} \phi_{0}=3 \delta_{r}^{t} \phi_{s}-\delta_{s}^{s} \phi_{r} \tag{69}
\end{align*}
$$

It then follows that \mathscr{B}^{\prime} has the same $U(3)$ content (28) as \mathscr{B}, and since it has already been shown that \mathscr{B}^{\prime} is a subspace of \mathscr{B}, it can be concluded that these two subspaces are indeed one and the same. The notation \mathscr{B} ' will henceforth be dropped.

Since \bar{A}^{r} carries the $\mathrm{U}(3)$ irrep $(p, 0,-q)$ into $(p+1,0,-q)$, it is clear that there is no proper subspace of \mathscr{B} which is both $U(3)$ invariant, and invariant under the action of $\overline{A^{\prime}}$. It follows, a fortiori, that there is no proper subspace invariant under the action of the whole $\operatorname{SO}(6,2)$ algebra (53), so the representation of this algebra on \mathscr{B} is indeed irreducible, as suggested earlier.

What are the orthogonality properties and lengths of the vectors (63)? The scalar product

$$
\begin{equation*}
\left(\phi_{k l . . m}^{r s . .}, \phi_{k \lambda \ldots \mu}^{\rho \sigma \ldots \tau}\right) \tag{70}
\end{equation*}
$$

can of course be calculated in any particular case by writing the \bar{A} - and \bar{B} - operators, in expressions like (63), in terms of boson operators, using the definitions (39) and (40), and by then applying the usual boson calculus. However, the problem can also be approached somewhat more directly as follows.

Suppose the left-hand member of the scalar product (70) has p upper and q lower indices, while the right-hand member has p^{\prime} upper and q^{\prime} lower indices. Then the scalar product vanishes unless $p=p^{\prime}$ and $q=q^{\prime}$, because the two members are eigenvectors of the Hermitian operators P and Q with eigenvalues $(p, q),\left(p^{\prime}, q^{\prime}\right)$ respectively. When each member has p upper and q lower indices, and so corresponds to the irrep ($p, 0,-q$) of $\mathrm{U}(3)$, it follows by covariance that the scalar product must be a multiple of the numerical tensor (a linear combination of products of Kronecker deltas)

$$
\begin{equation*}
D_{[r s, \ldots] ;(\kappa \lambda \ldots \mu)}^{(\rho \sigma \sigma)}=\delta_{r}^{\rho} \delta_{s}^{\sigma} \ldots \delta_{t}^{\tau} \delta_{k}^{k} \delta_{\lambda}^{l} \ldots \delta_{\mu}^{m}+\ldots, \tag{71}
\end{equation*}
$$

whose definition is completed by the requirement that it is separately symmetric in each of the bracketed sets of indices, and vanishes if any round-bracketed (resp. square-bracketed) upper index is contracted with any round-bracketed (resp. squarebracketed) lower index. For example
$D_{[r s] ;<\kappa)}^{(\rho \sigma) ;[k]}=\delta_{r}^{\rho} \delta_{s}^{\sigma} \delta_{\kappa}^{k}+\delta_{s}^{\rho} \delta_{r}^{\sigma} \delta_{\kappa}^{k}-\frac{1}{4}\left(\delta_{s}^{\rho} \delta_{\kappa}^{\sigma} \delta_{r}^{k}+\delta_{\kappa}^{\rho} \delta_{s}^{\sigma} \delta_{r}^{k}+\delta_{r}^{\rho} \delta_{\kappa}^{\sigma} \delta_{s}^{k}+\delta_{\kappa}^{\rho} \delta_{r}^{\sigma} \delta_{s}^{k}\right)$.
Then, if both tensors belong to ($p, 0,-q$),

$$
\begin{equation*}
\left(\phi_{k l \ldots m}^{r s \ldots, \ldots}, \phi_{\kappa \lambda \ldots \mu}^{\rho \sigma \ldots \tau}\right)=\theta(p, q) D_{[r s \ldots t] ;(\kappa \lambda \ldots \mu)}^{(\rho \sigma \ldots \tau) ;(k \ldots m]} \tag{73}
\end{equation*}
$$

with $\theta(p, q)$ a number depending only on p and q.
Consider

$$
\begin{equation*}
\chi=\phi_{33 \ldots 3}^{33 \ldots}=\left(\bar{A}^{3}\right)^{p}\left(\bar{B}_{3}\right)^{q} \phi_{0} . \tag{74}
\end{equation*}
$$

It follows from (43) and (44) and the shifting properties of A_{r} and B^{r} that the Hermitian conjugate of $\left(\bar{A}^{3}\right)^{p}\left(\bar{B}_{3}\right)^{q}$ is

$$
\begin{gather*}
(P+Q+2) B^{3}(P+Q+2) B^{3} \ldots(P+Q+2) B^{3}(P+Q+2) A_{3} \ldots(P+Q+2) A_{3} \\
=(P+Q+2)(P+Q+3) \ldots(P+Q+p+q+1)\left(B^{3}\right)^{q}\left(A_{3}\right)^{p} \tag{75}
\end{gather*}
$$

so that

$$
\begin{align*}
\|\chi\|^{2}=(\chi, \chi) & =\left(\phi_{0},(P+Q+2) \ldots(P+Q+p+q+1)\left(B^{3}\right)^{q}\left(A_{3}\right)^{p}\left(\bar{A}^{3}\right)^{p}\left(\bar{B}_{3}\right)^{q} \phi_{0}\right) \\
& =(p+q+1)!\left(\phi_{0},\left(B^{3}\right)^{q}\left(A_{3}\right)^{p}\left(\bar{A}^{3}\right)^{p}\left(\bar{B}_{3}\right)^{q} \phi_{0}\right) . \tag{76}
\end{align*}
$$

For any vector of the form χ, one has

$$
\begin{equation*}
A_{3}^{3} \chi=\left(A_{r}^{r}-A_{1}^{1}-A_{2}^{2}\right) \chi=A_{r}^{r} \chi=(P-Q) \chi, \tag{77}
\end{equation*}
$$

using (52). Then, also with the help of these relations (52), one has

$$
\begin{gather*}
{\left[A_{3} \bar{A}^{3}-(P+1)(P+2), \bar{A}^{3}\right] \chi=\left\{\left[A_{3}, \bar{A}^{3}\right] \bar{A}^{3}-2(P+1) \bar{A}^{3}\right\} \chi} \\
\quad=\left(Q-P+A_{3}^{3}\right) \bar{A}^{3} \chi=0 . \tag{78}
\end{gather*}
$$

Furthermore, again from (52),

$$
\begin{equation*}
\left[A_{3} \bar{A}^{3}-(P+1)(P+2), \bar{B}_{3}\right] \chi=0 \tag{79}
\end{equation*}
$$

Since $\left\{A_{3} \bar{A}^{3}-(P+1)(P+2)\right\}$ vanishes on ϕ_{0}, it then follows that it vanishes on any vector of the form χ. Similarly $\left\{B^{3} \bar{B}_{3}-(Q+1)(Q+2)\right\}$ vanishes on such vectors. Thus $A_{3} \bar{A}^{3}$ and $B^{3} \bar{B}_{3}$ can be replaced by $(P+1)(P+2)$ and $(Q+1)(Q+2)$, respectively, on such vectors. Then, from (76),

$$
\begin{align*}
\|x\|^{2} & =(p+q+1)!\left(\phi_{0},\left(B^{3}\right)^{q}\left(A_{3}\right)^{p-1}\left(A_{3} \bar{A}^{3}\right)\left(\bar{A}^{3}\right)^{p-1}\left(\bar{B}_{3}\right)^{q} \phi_{0}\right) \\
& =(p+q+1)!(p+1) p\left(\phi_{0},\left(B^{3}\right)^{q}\left(A_{3}\right)^{p-1}\left(\bar{A}^{3}\right)^{p-1}\left(\bar{B}_{3}\right)^{q} \phi_{0}\right) \\
& =(p+q+1)!(p+1)!p!\left(\phi_{0},\left(B^{3}\right)^{q-1}\left(B^{3} \bar{B}_{3}\right)\left(\bar{B}_{3}\right)^{q-1} \phi_{0}\right) \\
& =(p+q+1)!(p+1)!p!(q+1)!q!. \tag{80}
\end{align*}
$$

Now (73) implies that

$$
\begin{equation*}
\theta(p, q)=\left\|\phi_{33 \ldots 3}^{33 . .3}\right\|^{2} / D_{[33 \ldots 3) ;(33 \ldots 3)}^{(33 \ldots 3) ;(33)} \tag{81}
\end{equation*}
$$

so that one has, finally,

For example, because (72) implies

$$
\begin{equation*}
D_{[33] ;:(3)}^{(33)}=1, \tag{83}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\left(\phi_{k}^{r s}, \phi_{\kappa}^{\rho \sigma}\right)=4!3!2!2!1!D_{[r s):[(k)}^{(\rho \sigma):[k]} . \tag{84}
\end{equation*}
$$

5. Concluding remarks

A model of $\operatorname{SU}(3)$ has been constructed in the space \mathscr{B} obtained by applying arbitrary polynomials in modified creation operators to a vacuum vector. This space carries an irrep of the Lie algebra of $\mathrm{SO}(6,2)$, so the model can aptly be called an $\mathrm{SO}(6,2)$ model, just as Schwinger's model can be called a UW 2 model (see § 1). The question arises whether or not a simple model for $\operatorname{SU}(n), n \neq 3$, can be obtained; in other words, can one find for each n an irrep of (the Lie algebra of) a corresponding non-compact, simple Lie group $K>\operatorname{SU}(n)$, which contains in direct sum each different irrep of $\mathrm{SU}(n)$ exactly once. Indeed, the question extends from $\operatorname{SU}(n)$ to other compact Lie groups. Positive answers can readily be given in some cases: for example any infinitedimensional irrep of the homogeneous Lorentz group $\operatorname{SO}(3,1)$ labelled [$0, c$] in the usual $\left[k_{0}, c\right]$ notation, with c any non-integral complex number, contains every irrep of $\mathrm{SO}(3)$ exactly once (Gel'fand et al 1963) and so defines a model for that group.

Note that the irrep of the non-compact group defining the model need not be unitary, as this example shows: the irrep of $\operatorname{SO}(3,1)$ is only unitary if c is pure imaginary, or lies in the interval $[0,1)$.

Another question concerns the realisation of a model, if it exists, in terms of boson operators. When this is possible, as in the $\mathrm{SO}(6,2)$ model for $\mathrm{SU}(3)$, such a realisation has obvious computational advantages for the construction of the irreps of the compact group.

It has already been indicated above that the irrep of the $\mathrm{SO}(6,2)$ algebra in \mathscr{B} has an analogue for $\operatorname{SO}(4,2)$. In fact it has such an analogue for $\operatorname{SO}(2 n, 2) n=1,2,4,5, \ldots$. Simply take the range of free indices in (53) to be $1,2, \ldots, n$ rather than $1,2,3$; replace the subscripts 7 and 8 in (53) by ($2 n+1$), $(2 n+2)$; replace the factor $(P+Q+1)$ in (39) and (40) by ($P+Q+n-2$); and replace ($P+Q+2$) in (51) by ($P+Q+n-1$). Then a representation of the Lie algebra of $\operatorname{SO}(2 n, 2)$ on the Fock space $\mathscr{F}_{2 n}$ is obtained, and it can be restricted to an irreducible subspace on which $\alpha_{r} \beta^{r}$ vanishes. Does this subrepresentation define a model for $\operatorname{SU}(n)$ when $n \neq 3$? The answer is surely no. Although the modified creation and annihilation operators are in each case Wigner operators for $\operatorname{SU}(n)$, it is not hard to see that for $n=2$, irreps of $\operatorname{SU}(2)$ occur more than once, while for $n>3$, some irreps of $\operatorname{SU}(n)$ do not occur at all. Thus $\operatorname{SU}(3)$ occupies a special place in this context, a rather surprising result.

In the case $n=2$, there is a simple way to overcome this difficulty: restrict attention to the subspace obtained by applying to the vacuum vector, arbitrary polynomials in the \bar{A}-operators only (or the \bar{B}-operators only). This subspace carries every irrep of $\mathrm{SU}(2)$ exactly once, but it does not carry a representation of the full $\operatorname{SO}(4,2)$ algebra. Instead, it carries an irrep of the subalgebra spanned by $A_{n} \bar{A}^{r}$, and $A_{s}^{r}+\delta_{s}^{r} M(M=P+$ $Q+1$ in this case). This is the Lie algebra of $\operatorname{SU}(2,1)$, so it can be seen that there does exist a simple model for $\operatorname{SU}(2)$, namely an $\operatorname{SU}(2,1)$ model, as well as Schwinger's UW_{2} model which is not semi-simple. It could not be claimed that this $\operatorname{SU}(2,1)$ model is as attractive as Schwinger's model from the point of view of constructing and analysing the representations of $S U(2)$. It follows that simplicity of the non-compact group in terms of which a model for a compact subgroup is defined may not be an advantage.

In Schwinger's model, all Wigner tensor operators for $\operatorname{SU}(2)$ can be constructed very simply from the boson creation and annihilation operators. The situation is quite similar for the $\mathrm{SO}(6,2)$ model for $\mathrm{SU}(3)$. Introduce the completely antisymmetric numerical $\operatorname{SU}(3)$ tensors $\varepsilon^{r s t}, \varepsilon_{r s t}$, with $\varepsilon^{123}=\varepsilon_{123}=+1$, and define

$$
\begin{equation*}
\varepsilon^{r}=\mathrm{i} \varepsilon^{r s t} A_{s} \bar{B}_{l}, \quad \varepsilon_{r}=\mathrm{i} \varepsilon_{r s t} B^{s} \bar{A}^{t}, \tag{85}
\end{equation*}
$$

which can be seen from (43) and (44) to be Hermitian conjugate to each other on \mathscr{B}. Then ε^{r}, like \bar{A}^{r} and B^{r}, is a contravariant $\operatorname{SU}(3)$ vector (though, unlike \bar{A}^{r} and B^{r}, it is not a contravariant $\mathrm{U}(3)$ vector), while ε_{n}, A_{r} and \bar{B}_{r} are covariant $\mathrm{SU}(3)$ vectors. Thus, with T_{s}^{r} as in (9), one has

$$
\begin{equation*}
\left[\varepsilon^{r}, T_{t}^{s}\right]=-\delta_{t}^{r} \varepsilon^{r}+\frac{1}{3} \delta_{t}^{s} \varepsilon^{r}, \tag{86}
\end{equation*}
$$

just as for \bar{A}^{r} and B^{r}, and similarly

$$
\begin{equation*}
\left[\varepsilon_{n}, T_{t}^{s}\right]=\delta_{r}^{s} \varepsilon_{t}-\frac{1}{3} \delta_{t}^{s} \varepsilon_{m} \tag{87}
\end{equation*}
$$

just as for A_{r} and \bar{B}_{r}
The operators $\varepsilon^{\prime}, \bar{A}^{\prime}$ and B^{r} form a complete set (Louck and Biedenharn 1973) of contravariant $\mathrm{SU}(3)$-vector Wigner operators, with the shifting values $(-1,+1),(+1,0)$
and $(0,-1)$ for the labelling operators (P, Q). (Recall that the $S U(3)$ irreps are labelled $(p+q, q)$, where p and q are the eigenvalues of P and Q. Thus ε^{\prime}, for example, shifts the irrep $(p+q, q)$ to $(p+q, q+1)$.) Similarly ε_{r}, A_{r} and \bar{B}_{r} form a complete set of covariant $\mathrm{SU}(3)$-vector Wigner operators, with shifting values $(+1,-1),(-1,0)$ and $(0,+1)$ for (P, Q). Other simple vector operators which can be constructed, such as $A_{s}^{r} B^{s}$, turn out to be multiples (by $\mathrm{SU}(3)$ scalars) of these basic ones, in accordance with known general results (Green 1971). Note that since no $\mathrm{SU}(3)$ scalar can, on \mathscr{B}, fail to commute with P and Q, products like $\varepsilon^{r} A_{n} B^{r} \varepsilon_{r}$ etc must vanish there.

Higher-rank irreducible tensor operators which are also Wigner operators can easily be constructed from the six basic vector operators. For example, nine obvious irreducible second-rank mixed tensor operators ('octet' operators) can be constructed. Together with their shifting values for (P, Q), they are

$$
\begin{array}{ll}
\varepsilon^{r} A_{s}(-2,+1), & \varepsilon^{r} \bar{B}_{s}(-1,+2), \\
\bar{A}^{r} \varepsilon_{s}(+2,-1), & \bar{A}^{r} \bar{B}_{s}(+1,+1), \\
B^{r} \varepsilon_{s}(+1,-2), & B^{r} A_{s}(-1,-1), \tag{88}\\
\varepsilon^{r} \varepsilon_{s}-\frac{1}{3} \delta_{s}^{r}\left(\varepsilon^{t} \varepsilon_{t}\right)(0,0), & \\
\bar{A}^{r} A_{s}-\frac{1}{3} \delta_{s}^{\prime}\left(\bar{A}^{t} A_{t}\right)(0,0), & B^{r} \bar{B}_{s}-\frac{1}{3} \delta_{s}^{r}\left(B^{t} \overline{B_{t}}\right)(0,0) .
\end{array}
$$

Of these, only eight are independent, as only two of the last three are independent. One finds that

$$
\begin{align*}
& \varepsilon^{r} \varepsilon_{s}-\frac{1}{3} \delta_{s}^{r}\left(\varepsilon^{t} \varepsilon_{t}\right)=(P+Q+3)^{2}\left[G_{s}^{r}-\frac{1}{3}(P-Q+6) T_{s}^{r}\right] \\
& \bar{A}^{r} A_{s}-\frac{1}{3} \delta_{s}^{r}\left(\bar{A}^{t} A_{t}\right)=G_{s}^{r}+\frac{1}{3}(2 P+Q-3) T_{s}^{r} \tag{89}\\
& B^{r} \bar{B}_{s}-\frac{1}{3} \delta_{s}^{r}\left(B^{t} \bar{B}_{t}\right)=G_{s}^{r}-\frac{1}{3}(P+2 Q+9) T_{s}^{r}
\end{align*}
$$

where

$$
\begin{equation*}
G_{s}^{r}=T_{t}^{r} T_{s}^{t}-\frac{1}{3} \delta_{s}^{r}\left(T_{v}^{u} T_{u}^{v}\right) \tag{90}
\end{equation*}
$$

In fact any irreducible second-rank mixed tensor operator on \mathscr{B} which has the shifting values (0,0) (i.e. one which commutes with P and Q and so leaves invariant each irrep of $\operatorname{SU}(3)$) must be a linear combination (with $\mathrm{SU}(3)$-scalar coefficients) of T_{s}^{r} and G_{s}^{r}, in accordance with a result obtained by Okubo (1962).

Acknowledgment

We thank Dr B D Jones for bringing the paper of Bernšteǐn, Gel'fand and Gel'fand to our attention.

References

Bernšteǐn I N, Gel'fand I M and Gel'fand S I 1975 Funk. Anal. Prilozhen. 961 (Engl. Transl. Funct. Anal. Appl. 9 322)
Biedenharn L C and Flath D E 1984a Tensor Operators as an Extension of the Universal Enveloping Algebra to appear in Proc. XIIth Int. Colloquium on Group Theoretical Methods in Physics (Berlin: Springer)
_- 1984b Commun. Math. Phys 93143.
Biedenharn L C, Giovannini A and Louck J D 1967 J. Math. Phys. 8691
Biedenharn L C and Louck J D 1968 Commun. Math. Phys. 889

- 1981 The Racah-Wigner Algebra in Quantum Theory. Encyclopedia of Mathematics and its Applications vol 8 (Reading: Addison-Wesley)
Biedenharn L C, Louck J D, Chacon E and Ciftan M 1972 J. Math. Phys. 131957
Bracken A J 1984 A Simplified $S O(6,2)$ Model of $S U(3)$ to appear in Commun. Math. Phys.
Bracken A J and Green H S 1971 J. Math. Phys. 122099
Flath D E 1984 Bull. Am. Math. Soc. 1097
Flath D E and Biedenharn L C 1982 Beyond the Enveloping Algebra of s_{3}, preprint, Duke University
Gel'fand I M, Minlos R A and Shapiro Z Ya 1963 Representations of the Rotation and Lorentz Groups and Their Applications (London: Pergamon)
Gould M D 1980 J. Math. Phys. 21444
Green H S 1971 J. Math. Phys. 122106
Green H S and Bracken A J 1974 Int. J. Theor. Phys. 11157
Holman III W D and Biedenharn L C 1971 in Group Theory and its Applications vol II, ed E M Loebl (New York: Academic)
Lohe M A and Hurst C A 1971 J. Math. Phys. 121882
Louck J D and Biedenharn L C 1973 J. Math. Phys. 141336
Louck J D, Lohe M A and Biedenharn L C 1975 J. Math. Phys. 162408
Mack G and Todorov I T 1969 J. Math. Phys. 102078
Okubo S 1962 Prog. Theor. Phys. 27949
Pais A 1966 Rev. Mod. Phys. 38215
Schwinger J 1965 in Quantum Theory of Angular Momentum ed L C Biedenharn and H Van Dam (New York: Academic)
Sparling G A J 1981 Phil. Trans. R. Soc. A 30127
Takabayasi T 1964 Prog. Theor. Phys. 32981

[^0]: \dagger Present address: Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 0HA, UK.

